Abstract

Alkali/surfactant/polymer (ASP) flooding process is proven to be vitally effective for enhancing oil recovery (EOR) in the oil industry. However, foaming behavior is generated by the breakthrough of chemical agents in the produced liquid and is increasingly concerned as a terrible problem during production. A set of experiments were recently performed to investigate the effects of foaming properties of ASP flooding produced liquid. The factors affecting foaming capacity and foam stabilization were discussed, and the differences in foaming properties of produced liquid between the strong base and weak base ASP flooding were first compared. The results indicated that in addition to temperature and pressure, the concentrations of chemical agents in the produced liquid were responsible for the foaming properties and foam stabilization. The foaming capacity could enhance 3–7% at 45 °C compared with a lower temperature of 35 °C. The average comprehensive index of the foam could increase from 2.2 × 105 at 29 psi to 2.5× 105 at 73 psi. The regularity of Plateau borders was highlighted at higher pH and surfactant concentration and thus facilitated the foam stabilization. The liquid film thickened and its shape expanded to the state of maintaining foam stabilization with the increase of polymer concentration. Furthermore, the foaming behavior of produced liquid in strong base ASP flooding production is much-more troublesome than that in weak base ASP flooding production. This study is significant in that it further supports the development of efficient treatment technology for produced liquid in the oilfield.

References

1.
Griffiths
,
S.
,
2019
, “
Energy Diplomacy in a Time of Energy Transition
,”
Energy Strategy Rev.
,
26
, p.
100386
.
2.
Liu
,
Y.
,
Chen
,
S.
,
Guan
,
B.
, and
Xu
,
P.
,
2019
, “
Layout Optimization of Large-Scale Oil-Gas Gathering System Based on Combined Optimization Strategy
,”
Neurocomputing
,
332
, pp.
159
183
.
3.
Guo
,
T.
,
Tang
,
S.
,
Liu
,
S.
,
Xu
,
J.
,
Qi
,
N.
, and
Rui
,
Z.
,
2020
, “
Physical Simulation of Hydraulic Fracturing of Large-Sized Tight Sandstone Outcrops
,”
SPE Journal
,
26
(
01
), pp.
372
393
.
4.
Alvarado
,
V.
, and
Manrique
,
E.
,
2010
, “
Enhanced Oil Recovery: An Update Review
,”
Energies
,
3
(
9
), pp.
1529
1575
.
5.
Rui
,
Z.
,
Peng
,
F.
,
Ling
,
K.
,
Chang
,
H.
,
Chen
,
G.
, and
Zhou
,
X.
,
2017
, “
Investigation Into the Performance of Oil and Gas Projects
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
12
20
.
6.
Li
,
Y.
,
Yang
,
S.
,
Zhao
,
W.
,
Li
,
W.
, and
Zhang
,
J.
,
2018
, “
Experimental of Hydraulic Fracture Propagation Using Fixed-Point Multistage Fracturing in a Vertical Well in Tight Sandstone Reservoir
,”
J. Pet. Sci. Eng.
,
171
, pp.
704
713
.
7.
Wang
,
Z.
,
Yu
,
T.
,
Lin
,
X.
,
Wang
,
X.
, and
Su
,
L.
,
2016
, “
Chemicals Loss and the Effect on Formation Damage in Reservoirs With ASP Flooding Enhanced Oil Recovery
,”
J. Nat. Gas Sci. Eng.
,
33
, pp.
1381
1389
.
8.
Zhong
,
H.
,
Yang
,
T.
,
Yin
,
H.
,
Lu
,
J.
,
Zhang
,
K.
, and
Fu
,
C.
,
2019
, “
Role of Alkali Type in Chemical Loss and ASP-Flooding Enhanced Oil Recovery in Sandstone Formations
,”
SPE Reservoir Eval. Eng.
,
23
(
2
), pp.
431
445
.
9.
Sheng
,
J. J.
,
2014
, “
A Comprehensive Review of Alkaline–Surfactant–Polymer (ASP) Flooding
,”
Asia–Pac. J. Chem. Eng.
,
9
(
4
), pp.
471
489
.
10.
Samanta
,
A.
,
Ojha
,
K.
,
Sarkar
,
A.
, and
Mandal
,
A.
,
2013
, “
Mobility Control and Enhanced Oil Recovery Using Partially Hydrolysed Polyacrylamide
,”
Int. J. Oil, Gas Coal Technol.
,
6
(
3
), pp.
245
258
.
11.
Li
,
C.
,
Pu
,
H.
,
Zhong
,
X.
,
Li
,
Y.
, and
Zhao
,
J. X.
,
2020
, “
Interfacial Interactions Between Bakken Crude Oil and Injected Gases at Reservoir Temperature: A Molecular Dynamics Simulation Study
,”
Fuel
,
276
, p.
118058
.
12.
Saxena
,
N.
,
Goswami
,
A.
,
Dhodapkar
,
P. K.
,
Nihalani
,
M. C.
, and
Mandal
,
A.
,
2019
, “
Bio-based Surfactant for Enhanced Oil Recovery: Interfacial Properties, Emulsification and Rock-Fluid Interactions
,”
J. Pet. Sci. Eng.
,
176
, pp.
299
311
.
13.
Liu
,
Y.
,
Zhuge
,
X.
,
Wang
,
Z.
,
Huang
,
B.
, and
Le
,
X.
,
2018
, “
Case Study on Fluorocarbons Interior Coating for Anticorrosion and wax-Deposition Inhibition in ASP Flooding Production
,”
SPE-191656-MS, Presented at the SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Sept. 24–26
, Paper No. SPE-191656-MS.
14.
Wang
,
Z.
,
Bai
,
Y.
,
Zhang
,
H.
, and
Liu
,
Y.
,
2019
, “
Investigation on Gelation Nucleation Kinetics of Waxy Crude Oil Emulsions by Their Thermal Behavior
,”
J. Pet. Sci. Eng.
,
181
, p.
106230
.
15.
Shaban
,
H. I.
,
1995
, “
A Study of Foaming and Carry-Over Problems in Oil and Gas Separators
,”
Gas Sep. Purif.
,
9
(
2
), pp.
81
86
.
16.
Babamahmoudi
,
S.
, and
Riahi
,
S.
,
2018
, “
Application of Nano Particle for Enhancement of Foam Stability in the Presence of Crude Oil: Experimental Investigation
,”
J. Mol. Liq.
,
264
, pp.
499
509
.
17.
Durand
,
M.
,
Martinoty
,
G.
, and
Langevin
,
D.
,
1999
, “
Liquid Flow Through Aqueous Foams: From the Plateau Border-Dominated Regime to the Node-Dominated Regime
,”
Phys. Rev. E
,
60
(
6
), pp.
R6307
R6308
.
18.
Xu
,
X.
,
Saeedi
,
A.
, and
Liu
,
K.
,
2017
, “
Experimental Study on a Novel Foaming Formula for CO2 Foam Flooding
,”
ASME. J. Energy Resour. Technol.
,
139
(
2
), p.
022902
.
19.
Yan
,
Y.
,
2016
, “
Advances in the Foaming and Stabilization Mechanisms of Non-aqueous Systems
,”
Appl. Chem. Ind.
,
45
(
11
), pp.
2135
2138
.
20.
Beneventi
,
D.
,
Carre
,
B.
, and
Gandini
,
A.
,
2001
, “
Role of Surfactant Structure on Surface and Foaming Properties
,”
Colloids Surf., A
,
189
(
1–3
), pp.
65
73
.
21.
Kumar
,
S.
, and
Mandal
,
A.
,
2017
, “
Investigation on Stabilization of CO2 Foam by Ionic and Nonionic Surfactants in Presence of Different Additives for Application in Enhanced Oil Recovery
,”
Appl. Surf. Sci.
,
420
, pp.
9
20
.
22.
Petkova
,
R.
,
Tcholakova
,
S.
, and
Denkov
,
N. D.
,
2013
, “
Role of Polymer–Surfactant Interactions in Foams: Effects of pH and Surfactant Head Group for Cationic Polyvinylamine and Anionic Surfactants
,”
Colloids Surf., A
,
438
, pp.
174
185
.
23.
Blázquez
,
C.
,
Emond
,
E.
,
Schneider
,
S.
,
Dalmazzone
,
C.
, and
Bergeron
,
V.
,
2014
, “
Non-aqueous and Crude Oil Foams
,”
Oil Gas Sci. Technol.
,
69
(
3
), pp.
467
479
.
24.
Callaghan
,
I. C.
,
Mckechnie
,
A. L.
,
Ray
,
J. E.
, and
Wainwright
,
J. C.
,
1985
, “
Identification of Crude Oil Components Responsible for Foaming
,”
Soc. Pet. Eng. J.
,
25
(
2
), pp.
171
175
.
25.
Arnaudov
,
L.
,
Denkov
,
N. D.
,
Surcheva
,
I.
,
Durbut
,
P.
,
Broze
,
G.
, and
Mehreteab
,
A.
,
2001
, “
Effect of Oily Additives on Foamability and Foam Stability. 1. Role of Interfacial Properties
,”
Langmuir
,
17
(
22
), pp.
6999
7010
.
26.
Ross
,
S.
,
1946
, “
Foaming Volume and Foam Stability
,”
J. Phys. Chem.
,
50
(
5
), pp.
391
401
.
27.
Bureiko
,
A.
,
Trybala
,
A.
,
Kovalchuk
,
N.
, and
Starov
,
V.
,
2015
, “
Current Applications of Foams Formed From Mixed Surfactant-Polymer Solutions
,”
Adv. Colloid Interface Sci.
,
222
, pp.
670
677
.
28.
Shrestha
,
R. G.
,
Shrestha
,
L. K.
,
Solans
,
C.
,
Gonzalez
,
C.
, and
Aramaki
,
K.
,
2010
, “
Nonaqueous Foam With Outstanding Stability in Diglycerol Monomyristate/Olive Oil System
,”
Colloids Surf., A
,
353
(
2–3
), pp.
157
165
.
29.
Braun
,
L.
,
Kühnhammer
,
M.
, and
Klitzing
,
R.
,
2020
, “
Stability of Aqueous Foam Films and Foams Containing Polymers: Discrepancies Between Different Length Scales
,”
Curr. Opin. Colloid Interface Sci.
,
50
, p.
101379
.
30.
Ardakani
,
A. G.
,
Mohammadi Alamooti
,
A. H.
,
Rasaei
,
M. R.
,
Javadi
,
A.
,
Ghazanfari
,
M. H.
, and
Davarzani
,
H.
,
2020
, “
Monitoring Polymer-Enhanced Foam Displacements Through Heterogeneous Porous Media: A Pore-Scale Study
,”
ASME. J. Energy Resour. Technol.
,
142
(
7
), p.
073003
.
31.
Wang
,
H.
,
Guo
,
W.
,
Zheng
,
C.
,
Wang
,
D.
, and
Zhan
,
H.
,
2017
, “
Effect of Temperature on Foaming Ability and Foam Stability of Typical Surfactants Used for Foaming Agent
,”
J. Surfactants Deterg.
,
20
(
3
), pp.
615
622
.
32.
Srivastava
,
A.
,
Qiao
,
W.
,
Wu
,
Y.
,
Li
,
X.
,
Bao
,
L.
, and
Liu
,
C.
,
2017
, “
Effects of Silica Nanoparticles and Polymers on Foam Stability With Sodium Dodecylbenzene Sulfonate in Water-Liquid Paraffin Oil Emulsions at High Temperatures
,”
J. Mol. Liq.
,
241
, pp.
1069
1078
.
33.
Manev
,
E. D.
,
Sazdanova
,
S. V.
,
Rao
,
A. A.
, and
Wasan
,
D. T.
,
1982
, “
Foam Stability—The Effect of a Liquid Crystalline Phase on the Dynamic Behavior of Foam Films
,”
J. Dispersion Sci. Technol.
,
3
(
4
), pp.
435
463
.
34.
Dong
,
X.
,
Sun
,
D.
,
Zhang
,
H.
,
Cao
,
C.
,
Xu
,
J.
, and
Jiang
,
X.
,
2010
, “
Effect of Liquid Paraffin on the Stability of Aqueous Foam in the Presence and Absence of Electrolytes
,”
Colloid Polym. Sci.
,
288
(
12–13
), pp.
1271
1280
.
35.
Wang
,
Z.
,
Lin
,
X.
,
Yu
,
T.
,
Hu
,
Z.
,
Xu
,
M.
, and
Yu
,
H.
,
2016
, “
Case History of Dehydration-Technology Improvement for HCPF Production in the Daqing oil Field
,”
Oil Gas Facil.
,
5
(
12
), pp.
1
11
.
36.
Wang
,
Z.
,
Lin
,
X.
,
Yu
,
T.
,
Zhou
,
N.
,
Zhong
,
H.
, and
Zhu
,
J.
,
2019
, “
Formation and Rupture Mechanisms of Visco-elastic Interfacial Films in Polymer-Stabilized Emulsions
,”
J. Dispersion Sci. Technol.
,
40
(
4
), pp.
612
626
.
37.
Cao
,
X.
,
Wang
,
B.
,
Sun
,
Y.
,
Wen
,
J.
,
Lv
,
Y.
, and
Chen
,
H.
,
2019
, “
A Foam Drainage Technology Used in Gathering Pipelines Under Complextopographical Conditions
,”
Oil Gas Storage Transp.
,
38
(
1
), pp.
51
57
.
38.
Luo
,
W.
,
Feng
,
L.
,
He
,
C.
, and
Wang
,
Z.
,
2018
, “
Plugging Characteristics and Flow Redirection Effect of Foam
,”
J. Petrochem. Univ.
,
31
(
4
), pp.
63
68
.
39.
Wang
,
W.
,
2019
, “
Experimental Study on CO2 Surface Mixed Foam Profile Control and Flooding Technology for Super Heavy oil
,”
Unconv. Oil Gas Resour.
,
6
(
4
), pp.
65
70
.
40.
Zhu
,
Y.
,
Lei
,
M.
, and
Zhang
,
Y.
,
2015
, “
Effect of Emulsification on oil Recovery and Produced Liquid Handling in Chemical Combination Flooding
,”
SPE-174569-MS, Presented at the SPE Asia Pacific Enhanced Oil Recovery Conference, Kuala Lumpur
,
Aug. 11–13
, Paper No. SPE-174569-MS.
41.
He
,
Y.
,
Cheng
,
S.
,
Sun
,
Z.
,
Chai
,
Z.
, and
Rui
,
Z.
,
2020
, “
Improving Oil Recovery Through Fracture Injection and Production of Multiple Fractured Horizontal Wells
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
053002
.
42.
Tang
,
Y.
,
Hou
,
C.
,
He
,
Y.
,
Wang
,
Y.
,
Chen
,
Y.
, and
Rui
,
Z.
,
2020
, “
Review on Pore Structure Characterization and Microscopic Flow Mechanism of CO2 Flooding in Porous Media
,”
Energy Technol.
,
9
(
1
), p.
2000787
.
43.
Zhong
,
H.
,
Li
,
Y.
,
Zhang
,
W.
,
Yin
,
H.
,
Lu
,
J.
, and
Guo
,
D.
,
2018
, “
Microflow Mechanism of Oil Displacement by Viscoelastic Hydrophobically Associating Water-Soluble Polymers in Enhanced Oil Recovery
,”
Polymers
,
10
(
6
), p.
628
.
44.
Farajzadeh
,
R.
,
Andrianov
,
A.
,
Krastev
,
R.
,
Hirasaki
,
G. J.
, and
Rossen
,
W. R.
,
2012
, “
Foam–Oil Interaction in Porous Media: Implications for Foam Assisted Enhanced Oil Recovery
,”
Adv. Colloid Interface Sci.
,
183–184
, pp.
1
13
.
45.
Wang
,
H.
,
Liu
,
J.
,
Yang
,
Q.
,
Wang
,
Y.
,
Li
,
S.
,
Sun
,
S.
, and
Hu
,
S.
,
2020
, “
Study on the Influence of the External Conditions and Internal Components on Foam Performance in Gas Recovery
,”
Chem. Eng. Sci.
,
231
, p.
116279
.
46.
Morey
,
M. D.
,
Deshpande
,
N. S.
, and
Barigou
,
M.
,
1999
, “
Foam Destabilization by Mechanical and Ultrasonic Vibrations
,”
J. Colloid Interface Sci.
,
219
(
1
), pp.
90
98
.
47.
Santos
,
T. P.
, and
Cunha
,
R. L.
,
2020
, “
Designing Biotechnological Processes to Reduce Emulsions Formation and Improve Oil Recovery: Study of Antifoams Application
,”
Biochem. Eng. J.
,
163
, p.
107745
.
48.
Garrett
,
P. R.
,
2015
, “
Defoaming: Antifoams and Mechanical Methods
,”
Curr. Opin. Colloid Interface Sci.
,
20
(
2
), pp.
81
91
.
49.
Luo
,
X.
,
Cao
,
J.
,
He
,
L.
,
Wang
,
H.
,
Yan
,
H.
, and
Qin
,
Y.
,
2017
, “
An Experimental Study on the Coalescence Process of Binary Droplets in Oil Under Ultrasonic Standing Waves
,”
Ultrason. Sonochem.
,
34
, pp.
839
846
.
You do not currently have access to this content.