Abstract

This article presents a study of the influence of chemical mechanisms and turbulence models on Reynolds-averaged Navier–Stokes (RANS) simulations of the CH4/H2/N2-air turbulent diffusion flame, i.e., the so-called DLR-A flame. The first part of this study is focused on the assessment of the influence of four chemical models on predicted profiles of the DLR-A flame. The chemical mechanisms considered are as follows: (i) a C2 compact skeletal mechanism, which is derived from the GRI3.0 mechanism using an improved multistage reduction method, (ii) a C1 skeletal mechanism containing 41 elementary reactions amongst 16 species, (iii) the global mechanism by Jones and Lindstedt, (iv) and a global scheme consisting of the overall reactions of methane and dihydrogen. RANS numerical results (e.g., velocities, temperature, species, or the heat production rate profiles) obtained running the reactingFOAM solver with the four chemical mechanisms as well as the standard k − ɛ model, the partially stirred reactor (PaSR) combustion model, and the P − 1 radiation model indicate that the C2 skeletal mechanism yields the best agreement with measurements. In the second part of this study, four turbulence models, namely, the standard k − ɛ model, the renormalization group (RNG) k − ɛ model, realizable k − ɛ model, and the k − ω shear stress transport (SST) model, are considered to evaluate their effects on the DLR-A flame simulation results obtained with the C2 skeletal mechanism. Results reveal that the predictions obtained with the standard k − ɛ and the RNG k − ɛ models are in very good agreement with the experimental data. Hence, for simple jet flame with moderately high Reynolds number such as the DLR-A flame, the standard k-epsilon can model the turbulence with a very good accuracy.

References

1.
Mouangue
,
R.
,
Obounou
,
M.
,
Gomet
,
L.
, and
Mura
,
A.
,
2013
, “
Lagrangian Intermittent Modelling of a Turbulent Lifted Methane-Air Jet Flame Stabilized in a Vitiated Air Coflow
,”
Flow Turbul. Combust.
,
92
(
3
), pp.
731
765
. 10.1007/s10494-013-9512-6
2.
Hu
,
S.
,
Gao
,
J.
,
Gong
,
C.
,
Zhou
,
Y.
,
Bai
,
X. S.
,
Li
,
Z. S.
, and
Alden
,
M.
,
2017
, “
Assessment of Uncertainties of Laminar Flame Speed of Premixed Flames as Determined Using a Bunsen Burner at Varying Pressures
,”
Appl. Energy
,
227
(
1
), pp.
149
158
. 10.1016/j.apenergy.2017.09.083
3.
Ismail
,
H. K.
,
Ng
,
H.M.
,
Gan
,
S.
, and
Lucchinic
,
T.
,
2013
, “
Computational Study of Biodiesel–Diesel Fuel Blends on Emission Characteristics for a Light-Duty Diesel Engine Using OpenFOAM
,”
Appl. Energy
,
111
, pp.
827
841
. 10.1016/j.apenergy.2013.05.068
4.
Hassan
,
G.
,
Pourkashanian
,
M.
,
Ingham
,
D.
,
Ma
,
L.
,
Newman
,
P.
, and
Odedra
,
A.
,
2013
, “
Predictions of CO and NOx Emissions From Steam Cracking Furnaces Using GRI2.11 Detailed Reaction Mechanism—A CFD Investigation
,”
Comput. Chem. Eng.
,
58
(
0
), pp.
68
83
. 10.1016/j.compchemeng.2013.06.011
5.
Cao
,
R. R.
, and
Pope
,
S. B.
,
2005
, “
The Influence of Chemical Mechanisms on PDF Calculations of Nonpremixed Piloted Jet Flames
,”
Combust. Flame.
,
143
(
4
), pp.
450
470
. 10.1016/j.combustflame.2005.08.018
6.
Wang
,
Z.
,
Liu
,
L.
,
Chen
,
S.
, and
Zheng
,
C.
,
2012
, “
Comparison of Different Global Combustion Mechanisms Under Hot and Diluted Oxidation Conditions
,”
Combust. Sci. Technol.
,
184
(
2
), pp.
259
276
. 10.1080/00102202.2011.635612
7.
Zhou
,
X.
,
Jiang
,
X.
, and
Martinez
,
D. M.
,
2016
, “
The Effects of Chemical Kinetic Chemical Mechanisms on Large Eddy Simulation(LES) of a Nonpremixed Hydrogen Jet Flame
,”
Int. J. Hydrogen. Energy.
,
41
(
26
), pp.
11427
11440
. 10.1016/j.ijhydene.2016.04.079
8.
Davis
,
S. G.
,
Joshi
,
A. V.
,
Wang
,
H.
, and
Egolfopoulos
,
F.
,
2005
, “
An Optimized Kinetic Model of H2/CO Combustion
,”
Proc Combust Inst.
,
30
(
1
), pp.
1283
1292
. 10.1016/j.proci.2004.08.252
9.
Hong
,
Z.
,
Davidson
,
D. F
, and
Hanson
,
R. K.
,
2011
, “
An Improved H2/O2 Mechanism Based on Recent Shock Tube/laser Absorption Measurements
,”
Combust Flame.
,
158
(
4
), pp.
633-44
. 10.1016/j.combustflame.2010.10.002
10.
Ó Conaire
,
M.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2004
, “
A Comprehensive Modelling Study of Hydrogen Oxidation
,”
Int. J. Chem. Kinet.
,
36
(
11
), pp.
603
622
. 10.1002/kin.20036
11.
Boivin
,
P.
,
Jiménez
,
C
,
Sánchez
,
A. L.
, and
Williams
,
F. A.
,
2011
, “
An Explicit Reduced Mechanism for H2-Air Combustion
,”
Proc Combust Inst.
,
33
(
1
), pp.
517
523
. 10.1016/j.proci.2010.05.002
12.
Yilmaz
,
H.
,
Cam
,
O.
,
Tangoz
,
S.
, and
Yilmaz
,
I.
,
2017
, “
Effect of Different Turbulence Models on Combustion and Emission Characteristics of Hydrogen/Air Flames
,”
Int. J. Hydrogen. Energy.
,
42
(
40
), pp.
25744
25755
. 10.1016/j.ijhydene.2017.04.080
13.
Khodabandeh
,
E.
,
Moghadasi
,
H.
,
Pour
,
M. S.
,
Ersson
,
M.
,
Jönsson
,
P. G.
,
Rosen
,
M. A.
, and
Rahbari
,
A.
,
2020
, “
CFD Study of Non-Premixed Swirling Burners: Effect of Turbulence Models
,”
Chin. J. Chem. Eng.
,
28
(
4
), pp.
1029
1038
. 10.1016/j.cjche.2020.02.016
14.
Yang
,
B.
, and
Pope
,
S. B.
,
1998
, “
An Investigation of the Accuracy of Manifold Methods and Splitting Schemes in the Computational Implementation of Combustion Chemistry
,”
Combust. Flame
,
112
(
1–2
), pp.
16
32
. 10.1016/S0010-2180(97)81754-3
15.
Jones
,
W. P.
, and
Lindstedt
,
R. P.
,
1988
, “
Global Reaction Schemes for Hydrocarbon Combustion
,”
Combust. Flame.
,
73
(
3
), pp.
233
249
. 10.1016/0010-2180(88)90021-1
16.
Emami
,
M. D.
, and
Eshghinejad Fard
,
A.
,
2012
, “
Laminar Flamelet Modeling of a Turbulent CH4/H2/N2 Jet Diffusion Flame Using Artificial Neural Networks
,”
Appl. Math. Model.
,
36
(
5
), pp.
2082
2093
. 10.1016/j.apm.2011.08.012
17.
Kashir
,
B.
,
Tabejamaat
,
S.
, and
Jalalatian
,
N.
,
2015
, “
On Large Eddy Simulation of Blended CH4-H2 Swirling Inverse Diffusion Flames: The Impact of Hydrogen Concentration on Thermal and Emission Characteristics
,”
Int. J. Hydrogen. Energy.
,
40
(
45
), pp.
1
17
. 10.1016/j.ijhydene.2014.10.107
18.
Awakem
,
D.
,
Obounou
,
M.
, and
Noume
,
H. C.
,
2018
, “
Application of the CSP Method to a Turbulent Diffusion CH4/H2/N2 Flame Using OpenFoam
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042201
. 10.1115/1.4041841
19.
Noume
,
H. C.
,
Bomba
,
V.
, and
Obounou
,
M.
,
2020
, “
Numerical Investigation of a Turbulent Jet Flame With a Compact Skeletal Mechanism
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
032206
10.1115/1.4044556
20.
Chelem
,
M. C.
, and
Groll
,
R.
,
2018
, “
Performance Investigation of an Argon Fueled Magnetoplasmadynamic Thruster With Applied Magnetic Field
,”
J. Appl. Phys.
,
124
(
22
), p.
223301
. 10.1063/1.5038421
21.
Yang
,
Q.
,
Zhao
,
P.
, and
Ge
,
H.
,
2019
, “
reactingFoam-SCI: An Open Source CFD Platform for Reacting Flow Simulation
,”
Comput. Fluids
,
190
, pp.
114
127
. 10.1016/j.compfluid.2019.06.008
22.
Gaikwad
,
P.
, and
Sreedhara
,
S.
,
2019
, “
OpenFOAM Based Conditional Moment Closure (CMC) Model for Solving Non-Premixed Turbulent Combustion: Integration and Validation
,”
Comput. Fluids
,
190
, pp.
362
373
. 10.1016/j.compfluid.2019.06.029
23.
Kassem
,
H. I.
,
Saqr
,
K. M.
,
Sies
,
M. M.
, and
Wahid
,
M. A.
,
2012
, “
Integrating a Simplified P-N Radiation Model With EdmFoam1.5: Model Assessment and Validation
,”
Int. Commun. Heat Mass Transf.
,
39
(
5
), pp.
697
704
. 10.1016/j.icheatmasstransfer.2012.03.009
24.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat. Mass. Transfer.
,
15
(
2
), pp.
301
314
. 10.1016/0017-9310(72)90076-2
25.
Chen
,
L.
, and
Battaglia
,
F.
,
2017
, “
The Effects of Inlet Turbulence Intensity and Computational Domain on a Nonpremixed Bluff-Body Flame
,”
J. Energy Resour. Technol.
,
139
(
2
), p.
022205
, doi:10.1115/1.4035149.
26.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer
,
Antalya, Turkey
,
Oct. 12–17
,
Begell House
, pp.
625
632
.
27.
Cokljat
,
D.
,
Ivanov
,
V. A.
,
Sarasola
,
F. J.
, and
Vasquez
,
S. A.
,
2000
, “
Multiphase K-Epsilon Models for Unstructured Meshes
,”
ASME 2000 Fluids Engineering Division Summer Meeting
,
Boston, MA
,
June 11–15
, Vol.
25
, No.
1
.
28.
Shaheed
,
A.
,
Mohammadian
,
R.
, and
Gildeh
,
H. K.
,
2019
, “
A Comparison of Standard kɛ and Realizable kɛ Turbulence Models in Curved and Confluent Channels
,”
Environ. Fluid Mech.
,
19
, pp.
543
568
. 10.1007/s10652-018-9637-1
29.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2006
, “
A Correlation Based Transition Model Using Local Variables Part 1–Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), p.
413
. 10.1115/1.2184352
30.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
,
DCW Industries Inc.
,
La Canada, CA
.
31.
Magnussen
,
B. F.
, and
Hjertager
,
B.
,
1981
, “
On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow
,”
19th AIAA Aerospace Meeting
,
St. Louis, MO
,
Jan. 12–15
, Vol.
198
.
32.
Nordin
,
N.
,
2001
, “
Complex Chemistry Modeling of Diesel Spray Combustion
,”
Ph.D. thesis
,
Department of Thermo and Fluid Dynamics Chalmers, University of Technology
,
Göteborg
.
33.
Golovitchev
,
V. I.
,
Nordin
,
N.
,
Jarnicki
,
R.
, and
Chomiak
,
J.
,
2000
, “
3-D Diesel Spray Simulations Using a New Detailed Chemistry Turbulent Combustion Model
,”
J. Fuels Lubr., SAE Int.
,
109
, pp.
1391
1405
, Section 4. 10.4271/2000-01-1891
34.
Lu
,
T.
, and
Law
,
C. K.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
. 10.1016/j.proci.2004.08.145
35.
Bomba
,
V.
,
2017
, “
Chemistry Reduction for Laminar Oxyfuel Combustion
,”
Ph.D. thesis
,
Ruhr University Bochum
,
Bremen, Germany
.
36.
Lam
,
S. H.
, and
Goussis
,
D. A.
,
1988
, “
Understanding Complex Chemical Kinetics With Computational Singular Perturbation
,”
Proc. Co mbust. Inst.
,
22
, pp.
931
941
. 10.1016/S0082-0784(89)80102-X
37.
Du
,
L.
,
Yu
,
G.
,
Wang
,
Z.
, and
Metghalchi
,
H.
,
2019
, “
The Rate-Controlled Constrained-Equilibrium Combustion Modeling of N-Pentane/Oxygen/Diluent Mixtures
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082206
. 10.1115/1.4042532
38.
Yu
,
G.
,
Hadi
,
F.
, and
Metghalchi
,
H.
,
2018
, “
Rate-Controlled Constrained-Equilibrium Application in Shock Tube Ignition Delay Time Simulation
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
020801
. 10.1115/1.4041288
39.
Yu
,
G.
,
Metghalchi
,
H.
,
Askari
,
O.
, and
Wang
,
Z.
,
2018
, “
Combustion Simulation of Propane/Oxygen (With Nitrogen/Argon) Mixtures Using Rate-Controlled Constrained-equilibrium
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022204
. 10.1115/1.4041289
40.
Peters
,
N.
,
1988
, “
Laminar Flamelet Concepts in Turbulent Combustion
,”
Symp. (Int.) Combust.
,
21
(
1
), pp.
1231
1250
. 10.1016/S0082-0784(88)80355-2
41.
Pitsch
,
H.
, and
Peters
,
N.
,
1998
, “
A Consistent Flamelet Formulation for Non-Premixed Combustion Considering Differential Diffusion Effects
,”
Combust. Flame
,
114
(
1–2
), pp.
26
40
. 10.1016/S0010-2180(97)00278-2
42.
James
,
S.
,
Anand
,
M. S.
,
Razdan
,
M. K.
, and
Pope
,
S. B.
,
1999
, “
In Situ Detailed Chemistry Calculations in Combustor Flow Analyses
,”
ASME J. Energy Resour. Technol.
,
123
(
4
), pp.
747
756
. 10.1115/1.1384878
43.
Correa
,
S. M.
,
1993
, “
Turbulence-Chemistry Interactions in the Intermediate Regime of Premixed Combustion
,”
Combust. Flame.
,
93
(
1–2
), pp.
41
60
. 10.1016/0010-2180(93)90083-F
44.
Cuoci
,
A.
,
Frassoldati
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2009
, “
Accuracy and Flexibility of Simplified Kinetic Models for CFD Applications
,”
32nd Annual Meeting of the Italian Section of the Combustion Institute
,
Naples, France
,
Apr. 26–28
.
45.
Andersen
,
J.
,
Rasmussen
,
C. L.
,
Giselsson
,
T.
, and
Glarborg
,
P.
,
2009
, “
Global Combustion Mechanisms for Use in CFD Modeling Under Oxy-Fuel Conditions
,”
Energy Fuels
,
23
(
3
), pp.
1379
1389
. 10.1021/ef8003619
46.
Frassoldati
,
A.
,
Ranzi
,
E.
,
Candusso
,
C.
, and
Tolazzi
,
D.
,
2009
, “
Simplified Kinetic Schemes for Oxy-Fuel Combustion
,”
1st International Conference on Sustainable Fossil Fuels for Future Energy – S4FE 2009
,
Rome, Italy
,
July 6–10
.
47.
Bibrzycki
,
J.
, and
Poinsot
,
T.
,
2010
, “
Reduced Chemical Kinetic Mechanisms for Methane Combustion in O2/N2 and O2/CO2 Atmosphere
,” Technical Report Cerfacs, Silesian University of Technology, Institute of Thermal Technology, Gliwice, Poland and Université de Toulouse, Institut de Méchanique des Fluides de Toulouse, Toulouse, France, Report no. 4.
48.
Bergmann
,
W.
,
Meir
,
V.
,
Wolff
,
D.
, and
Stricker
,
W.
,
1998
, “
Application of Spontaneous Raman and Rayleigh Scattering and 2D LIF for the Characterization of a Turbulent CH4/H2/N2 Jet Diffusion Flame
,”
Appl. Phys. B: Laser Opt.
,
66
(
4
), pp.
489
502
. 10.1007/s003400050424
You do not currently have access to this content.