Abstract
Water-soluble gas reservoirs have the characteristics of high temperature and high pressure (HTHP) and experience obvious pressure-sensitive effects during the production process. Therefore, the influences of formation water and dissolved natural gas in formation water on water-soluble gas reservoirs are different from conventional gas reservoirs. In view of this, this work first carried out a stress sensitivity test with irreducible water and variable internal pressure at high temperature for a water-soluble gas reservoir, showing that permeability loss ratio and effective stress have an exponential relationship, a result basically consistent with conventional tests. However, the stress sensitivity test result with irreducible water was greater than the stress sensitivity test result without irreducible water; porosity decreased slightly with increasing confining pressure, and the total decrease ratio was less than 5.2%, with an average of 3.01%. Second, a high-pressure, high-temperature, nuclear magnetic resonance (NMR) online detection system was introduced to detect the pore signal of core samples under different effective stress states, and pore compression and deformation characteristics were evaluated. Results show large pores to have been compressed slightly more than small pores, pores to be significantly compressed in the initial stage, and the greater the increase in effective stress, the more obvious the compression. Third, the occurrence and characteristic changes of irreducible water in the process of rock compression were detected by the NMR online system, indicating irreducible water to be difficult to migrate through compression in water-soluble gas reservoirs under slight compression of rock and pore structure and the occurrence and characteristics of irreducible water to have not changed significantly. Finally, by establishing a theoretical model of water-soluble gas reservoirs to simulate the water breakthrough of gas wells under stress sensitivity conditions, this work shows that when stress sensitivity exists, gas-well water breakthrough time is earlier and production is diminished.