Abstract

Water-soluble gas reservoirs have the characteristics of high temperature and high pressure (HTHP) and experience obvious pressure-sensitive effects during the production process. Therefore, the influences of formation water and dissolved natural gas in formation water on water-soluble gas reservoirs are different from conventional gas reservoirs. In view of this, this work first carried out a stress sensitivity test with irreducible water and variable internal pressure at high temperature for a water-soluble gas reservoir, showing that permeability loss ratio and effective stress have an exponential relationship, a result basically consistent with conventional tests. However, the stress sensitivity test result with irreducible water was greater than the stress sensitivity test result without irreducible water; porosity decreased slightly with increasing confining pressure, and the total decrease ratio was less than 5.2%, with an average of 3.01%. Second, a high-pressure, high-temperature, nuclear magnetic resonance (NMR) online detection system was introduced to detect the pore signal of core samples under different effective stress states, and pore compression and deformation characteristics were evaluated. Results show large pores to have been compressed slightly more than small pores, pores to be significantly compressed in the initial stage, and the greater the increase in effective stress, the more obvious the compression. Third, the occurrence and characteristic changes of irreducible water in the process of rock compression were detected by the NMR online system, indicating irreducible water to be difficult to migrate through compression in water-soluble gas reservoirs under slight compression of rock and pore structure and the occurrence and characteristics of irreducible water to have not changed significantly. Finally, by establishing a theoretical model of water-soluble gas reservoirs to simulate the water breakthrough of gas wells under stress sensitivity conditions, this work shows that when stress sensitivity exists, gas-well water breakthrough time is earlier and production is diminished.

References

1.
Huang
,
X.
,
Guo
,
X.
,
Zhou
,
X.
,
Shen
,
C.
,
Lu
,
X.
,
Qi
,
Z.
,
Xiao
,
Q.
, and
Yan
,
W.
,
2019
, “
Effects of Water Invasion Law on Gas Wells in High Temperature and High Pressure Gas Reservoir With a Large Accumulation of Water-Soluble Gas
,”
J. Nat. Gas Sci. Eng.
,
62
(
2
), pp.
68
78
. 10.1016/j.jngse.2018.11.029
2.
He
,
H.
,
Sun
,
B.
,
Wang
,
Z.
,
Liu
,
Y.
, and
Sun
,
X.
,
2020
, “
A Constitutive Model for Predicting the Solubility of Gases in Water at High Temperature and Pressure
,”
J. Pet. Sci. Eng.
,
192
(
9
), p.
107337
. 10.1016/j.petrol.2020.107337
3.
Huang
,
X.
,
Qi
,
Z.
,
Li
,
S.
,
Xiao
,
Q.
,
Mo
,
F.
, and
Fang
,
F.
,
2021
, “
Study on Prediction Model About Water Content in High-Temperature and High-Pressure Water-Soluble Gas Reservoirs
,”
ASME J. Energy. Resour. Technol.
,
143
(
2
), p.
023501
. 10.1115/1.4047606
4.
Sun
,
Z.
,
Xu
,
Y.
,
Yao
,
J.
,
Sun
,
Z.
, and
Liu
,
J.
,
2014
, “
Numerical Simulation of Produced Water Reinjection Technology for Water-Soluble gas Recovery
,”
J. Nat. Gas Sci. Eng.
,
21
(
11
), pp.
700
711
. 10.1016/j.jngse.2014.09.032
5.
Huang
,
X.
,
Guo
,
X.
,
Lu
,
X.
,
Zhou
,
X.
,
Qi
,
Z.
,
Yan
,
W.
, and
Li
,
J.
,
2018
, “
Mathematical Model Study on the Damage of the Liquid Phase to Productivity in the Gas Reservoir With a Bottom Water Zone
,”
Petroleum
,
4
(
2
), pp.
209
214
. 10.1016/j.petlm.2017.12.009
6.
Huang
,
X.
,
Guo
,
X.
,
Zhou
,
X.
,
Lu
,
X.
,
Shen
,
C.
,
Qi
,
Z.
, and
Li
,
J.
,
2019
, “
Productivity Model for Water-Producing Gas Well in a Dipping Gas Reservoir With an Aquifer Considering Stress-Sensitive Effect
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022903
. 10.1115/1.4041741
7.
Liu
,
J.
,
Sun
,
L.
,
Wu
,
X.
, and
Yao
,
J.
,
2016
, “
Feasibility of Combination of CO2 Geological Storage With Geothermal-Type Water-Soluble Gas Recovery in Yinggehai Basin, China
,”
Int. J. Greenh. Gas Con.
,
45
(
2
), pp.
139
149
. 10.1016/j.ijggc.2015.11.032
8.
Qin
,
S.
,
Li
,
F.
,
Zhou
,
Z.
, and
Zhou
,
G.
,
2018
, “
Geochemical Characteristics of Water-Dissolved Gases and Implications on Gas Origin of Sinian to Cambrian Reservoirs of Anyue Gas Field in Sichuan Basin, China
,”
Mar. Petrol. Geol.
,
89
(
1
), pp.
83
90
. 10.1016/j.marpetgeo.2017.05.013
9.
Shao
,
J.
,
You
,
L.
,
Kang
,
Y.
,
Gao
,
X.
,
Chen
,
M.
,
Meng
,
S.
, and
Zhang
,
N.
,
2020
, “
Experimental Study on Stress Sensitivity of Underground Gas Storage
,”
J. Pet. Sci. Eng.
,
195
(
12
), p.
107577
. 10.1016/j.petrol.2020.107577
10.
Zhang
,
W.
,
Wang
,
Q.
,
Ning
,
Z.
,
Zhang
,
R.
,
Huang
,
L.
, and
Cheng
,
Z.
,
2018
, “
Relationship Between the Stress Sensitivity and Pore Structure of Shale
,”
J. Nat. Gas Sci. Eng.
,
59
(
11
), pp.
440
451
.
11.
Zhang
,
H.
,
Zhong
,
Y.
,
Kuru
,
E.
,
Kuang
,
J.
, and
She
,
J.
,
2019
, “
Impacts of Permeability Stress Sensitivity and Aqueous Phase Trapping on the Tight Sandstone Gas Well Productivity—A Case Study of the Daniudi Gas Field
,”
J. Pet. Sci. Eng.
,
177
(
6
), pp.
261
269
. 10.1016/j.petrol.2019.02.044
12.
Dong
,
M.
,
Shi
,
X.
,
Bai
,
J.
,
Yang
,
Z.
, and
Qi
,
Z.
,
2020
, “
A Novel Model for Well Production Performance Estimate in Low-Permeability and Tight Reservoirs Considering Stress Sensitivity
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
093002
. 10.1115/1.4046701
13.
Jones
,
C.
, and
Smart
,
B. G. D.
,
2002
, “
Stress Induced Changes in Two-Phase Permeability
,”
SPE/ISRM Rock Mechanics Conference
,
Oct. 20–23
,
Irving, TX
, SPE Paper No. SPE-78155-MS.
14.
Zhu
,
S.
,
2013
, “
Experiment Research of Tight Sandstone Gas Reservoir Stress Sensitivity Based on The Capillary Bundle Mode
,”
SPE Annual Technical Conference and Exhibition
,
Sept. 30–Oct. 2
,
New Orleans, LA
, SPE Paper No. SPE-167638-STU.
15.
Duan
,
Y.
,
Meng
,
Y.
,
Luo
,
P.
, and
Su
,
W.
,
1998
, “
Stress Sensitivity of Naturally Fractured-Porous Reservoir With Dual-Porosity
,”
SPE International Oil and Gas Conference and Exhibition in China
,
Beijing, China
,
Nov. 2–6
, SPE Paper No. SPE-50909-MS.
16.
Zhu
,
H.
,
Tang
,
X.
,
Liu
,
Q.
,
Liu
,
S.
,
Zhang
,
B.
,
Jiang
,
S.
, and
McLennan
,
J. D.
,
2018
, “
Permeability Stress-Sensitivity in 4D Flow-Geomechanical Coupling of Shouyang CBM Reservoir, Qinshui Basin, China
,”
Fuel
,
232
(
11
), pp.
817
832
. 10.1016/j.fuel.2018.05.078
17.
Jiang
,
R.
,
Liu
,
X.
,
Cui
,
Y.
,
Wang
,
X.
,
Gao
,
Y.
,
Mao
,
N.
, and
Yan
,
X.
,
2020
, “
Production Performance Analysis for Multi-Branched Horizontal Wells in Composite Coal Bed Methane Reservoir Considering Stress Sensitivity
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
073001
. 10.1115/1.4046524
18.
Sun
,
F.
,
Yao
,
Y.
,
Li
,
G.
, and
Liu
,
W.
,
2019
, “
Simulation of Real Gas Mixture Transport Through Aqueous Nanopores During the Depressurization Process Considering Stress Sensitivity
,”
J. Pet. Sci. Eng.
,
178
(
7
), pp.
829
837
. 10.1016/j.petrol.2019.02.084
19.
Gao
,
H.
,
Wang
,
C.
,
Cao
,
J.
,
He
,
M.
, and
Dou
,
L.
,
2019
, “
Quantitative Study on the Stress Sensitivity of Pores in Tight Sandstone Reservoirs of Ordos Basin Using NMR Technique
,”
J. Pet. Sci. Eng.
,
172
(
1
), pp.
401
410
. 10.1016/j.petrol.2018.09.083
20.
Yang
,
Y.
,
Zhang
,
W.
,
Gao
,
Y.
,
Wan
,
Y.
,
Su
,
Y.
,
An
,
S.
,
Sun
,
H.
,
Zhang
,
L.
,
Zhao
,
J.
,
Liu
,
L.
,
Liu
,
P.
,
Liu
,
Z.
,
Li
,
A.
, and
Yao
,
J.
,
2016
, “
Influence of Stress Sensitivity on Microscopic Pore Structure and Fluid Flow in Porous Media
,”
J. Nat. Gas Sci. Eng.
,
36
(
11
), pp.
20
31
. 10.1016/j.jngse.2016.09.061
21.
Cao
,
N.
, and
Lei
,
G.
,
2019
, “
Stress Sensitivity of Tight Reservoirs During Pressure Loading and Unloading Process
,”
Petrol. Explor. Dev.
,
46
(
1
), pp.
138
144
. 10.1016/S1876-3804(19)30013-8
22.
Zhang
,
J.
,
Wei
,
C.
,
Ju
,
W.
,
Yan
,
G.
,
Lu
,
G.
,
Hou
,
X.
, and
Kai
,
Z.
,
2019
, “
Stress Sensitivity Characterization and Heterogeneous Variation of the Pore-Fracture System in Middle-High Rank Coals Reservoir Based on NMR Experiments
,”
Fuel
,
238
(
2
), pp.
331
344
. 10.1016/j.fuel.2018.10.127
23.
Tian
,
X.
,
Cheng
,
L.
,
Cao
,
R.
,
Wang
,
Y.
,
Zhao
,
W.
,
Yan
,
Y.
,
Liu
,
H.
,
Mao
,
W.
,
Zhang
,
M.
, and
Guo
,
Q.
,
2015
, “
A New Approach to Calculate Permeability Stress Sensitivity in Tight Sandstone Oil Reservoirs Considering Micro-Pore-Throat Structure
,”
J. Pet. Sci. Eng.
,
133
(
9
), pp.
576
588
. 10.1016/j.petrol.2015.05.026
24.
Berumen
,
S.
, and
Tiab
,
D.
,
1997
, “
Interpretation of Stress Damage on Fracture Conductivity
,”
J. Pet. Sci. Eng.
,
17
(
1–2
), pp.
71
85
. 10.1016/S0920-4105(96)00057-5
25.
Teklu
,
T. W.
,
Li
,
X.
,
Zhou
,
Z.
, and
Abass
,
H.
,
2018
, “
Experimental Investigation on Permeability and Porosity Hysteresis of Tight Formations
,”
SPE J.
,
23
(
3
), pp.
672
690
. 10.2118/180226-PA
26.
Yu
,
B.
,
Liu
,
C.
,
Zhang
,
D.
,
Zhao
,
H.
,
Li
,
M.
,
Liu
,
Y.
,
Yu
,
G.
, and
Li
,
H.
,
2020
, “
Experimental Study on the Anisotropy of the Effective Stress Coefficient of Sandstone Under True Triaxial Stress
,”
J. Nat. Gas Sci. Eng.
,
84
(
12
), p.
103651
. 10.1016/j.jngse.2020.103651
27.
Jiang
,
L.
,
Liu
,
T.
, and
Yang
,
D.
,
2019
, “
Effect of Stress-Sensitive Fracture Conductivity on Transient Pressure Behavior for a Horizontal Well With Multistage Fractures
,”
SPE J.
,
24
(
3
), pp.
1342
1363
. 10.2118/194509-PA
28.
Jiang
,
L.
,
Liu
,
T.
, and
Yang
,
D.
,
2019
, “
A Semianalytical Model for Predicting Transient Pressure Behavior of a Hydraulically Fractured Horizontal Well in a Naturally Fractured Reservoir With Non-Darcy Flow and Stress-Sensitive Permeability Effects
,”
SPE J.
,
24
(
3
), pp.
1322
1341
. 10.2118/194501-PA
29.
Jiang
,
L.
,
Liu
,
J.
,
Liu
,
T.
, and
Yang
,
D.
,
2020
, “
Semi-Analytical Modeling of Transient Pressure Behaviour for Fractured Horizontal Wells in a Tight Formation With Fractal-Like Discrete Fracture Network
,”
J. Pet. Sci. Eng.
,
197
(
2
), p.
107937
. 10.1016/j.petrol.2020.107937
30.
Jiang
,
L.
,
Liu
,
J.
,
Liu
,
T.
, and
Yang
,
D.
,
2020
, “
Semi-Analytical Modeling of Transient Rate Behaviour of a Horizontal Well With Multistage Fractures in Tight Formations Considering Stress-Sensitive Effect
,”
J. Nat. Gas Sci. Eng.
,
82
(
10
), p.
103461
. 10.1016/j.jngse.2020.103461
31.
Raghavan
,
R.
,
Scorer
,
J. D. T.
, and
Miller
,
F. G.
,
1972
, “
An Investigation by Numerical Methods of the Effect of Pressure-Dependent Rock and Fluid Properties on Well Flow Tests
,”
SPE J.
,
12
(
3
), pp.
267
275
. 10.2118/2617-pa
32.
Wang
,
J.
,
Jia
,
A.
,
Wei
,
Y.
, and
Qi
,
Y.
,
2017
, “
Approximate Semi-Analytical Modeling of Transient Behavior of Horizontal Well Intercepted by Multiple Pressure-Dependent Conductivity Fractures in Pressure-Sensitive Reservoir
,”
J. Pet. Sci. Eng.
,
153
(
5
), pp.
157
177
. 10.1016/j.petrol.2017.03.032
33.
Dong
,
X.
,
Shen
,
L.
,
Liu
,
X.
,
Zhang
,
P.
,
Sun
,
Y.
,
Yan
,
W.
,
Jiang
,
L.
,
Wang
,
F.
, and
Sun
,
J.
,
2020
, “
NMR Characterization of a Tight Sand's Pore Structures and Fluid Mobility: An Experimental Investigation for CO2 EOR Potential
,”
Mar. Petrol. Geol.
,
118
(
8
), p.
104460
. 10.1016/j.marpetgeo.2020.104460
34.
Guo
,
J.
,
Xie
,
R.
, and
Xiao
,
L.
,
2020
, “
Pore-fluid Characterizations and Microscopic Mechanisms of Sedimentary Rocks With Three-Dimensional NMR: Tight Sandstone as an Example
,”
J. Nat. Gas Sci. Eng.
,
80
(
8
), p.
1033922
. 10.1016/j.jngse.2020.103392
35.
Fan
,
X.
,
Wang
,
G.
,
Li
,
Y.
,
Dai
,
Q.
,
Linghu
,
S.
,
Duan
,
C.
,
Zhang
,
C.
, and
Zhang
,
F.
,
2019
, “
Pore Structure Evaluation of Tight Reservoirs in the Mixed Siliciclastic-Carbonate Sediments Using Fractal Analysis of NMR Experiments and Logs
,”
Mar. Petrol. Geol.
,
109
(
11
), pp.
484
493
. 10.1016/j.marpetgeo.2019.06.038
36.
Guo
,
T.
,
Gong
,
F.
,
Lin
,
X.
,
Lin
,
Q.
, and
Wang
,
X.
,
2018
, “
Experimental Investigation on Damage Mechanism of Guar Gum Fracturing Fluid to Low-Permeability Reservoir Based on Nuclear Magnetic Resonance
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072906
. 10.1115/1.4039324
37.
Feng
,
R.
,
Chen
,
S.
,
Bryant
,
S.
, and
Liu
,
J.
,
2019
, “
Stress-Dependent Permeability Measurement Techniques for Unconventional Gas Reservoirs: Review, Evaluation, and Application
,”
Fuel
,
256
(
11
), p.
115987
. 10.1016/j.fuel.2019.115987
38.
Chen
,
S.
,
Li
,
H.
,
Zhang
,
Q.
, and
Yang
,
D.
,
2008
, “
A New Technique for Production Prediction in Stress-Sensitive Reservoirs
,”
J. Can. Pet. Technol.
,
47
(
3
), pp.
49
54
. 10.2118/08-03-49
39.
Pedrosa
,
O. A.
,
1986
, “
Pressure Transient Response in Stress-Sensitive Formations
,” Paper SPE 15115,
The SPE California Regional Meeting
,
Oakland, CA
,
Apr. 2–4
.
40.
Liu
,
G.
,
Yin
,
H.
,
Lan
,
Y.
,
Fei
,
S.
, and
Yang
,
D.
,
2020
, “
Experimental Determination of Dynamic Pore-Throat Structure With Consideration of Effective Stress
,”
Mar. Pet. Geol.
,
113
(
3
), p.
104170
. 10.1016/j.marpetgeo.2019.104170
41.
Liu
,
G.
,
Bai
,
Y.
,
Gu
,
D.
,
Lu
,
Y.
, and
Yang
,
D.
,
2018
, “
Determination of Static and Dynamic Characteristics of Microscopic Pore-Throat Structure in a Tight Oil-Bearing Sandstone Formation
,”
AAPG Bull.
,
102
(
9
), pp.
1867
1892
. 10.1306/0108181613217061
42.
Gao
,
H.
, and
Li
,
H.
,
2016
, “
Pore Structure Characterization, Permeability Evaluation and Enhanced Gas Recovery Techniques of Tight Gas Sandstones
,”
J. Nat. Gas Sci. Eng.
,
28
(
6
), pp.
536
547
. 10.1016/j.jngse.2015.12.018
You do not currently have access to this content.