Abstract

The hole cleaning issue in gas-lift drilling has been a concern and has not been previously investigated due to the difficulties of experimental studies and analytical modeling. The objective of this study is to deliver an assessment of hole cleaning capacity of drilling fluid in reverse circulation conditions for different bit designs. We use the finite element method (FEM) to target this issue and address a critical question in gas-lift drilling. The result of the theoretical investigation indicates that clean bottom hole can be achieved in gas-lift drilling through optimization of drill bit design to balance fluid energy (cleaning power) between tooth blades. Three drill bit designs were investigated in this study. The flow power balance between blades can be achieved with a 3-orifice bit design and a 2-orifice bit design, but there exist flow stagnation zones between these orifices, which are not desirable for bit tooth and borehole cleaning. The 1-orifice bit design with four cutter blades can eliminate flow stagnation zone and improve flow field to achieve a much better flow power balance between blades and thus bit tooth and borehole cleaning. Therefore, drill bits with one orifice are desirable for reverse circulation gas-drilling. This paper presents a novel technique of using FEM to evaluate bit hydraulics for hole cleaning in reverse drilling conditions. Future laboratory tests are desirable to obtain real data for further validating the model result.

References

1.
Meng
,
X.
, and
Wang
,
J.
,
2020
, “
Production Performance Evaluation of Multifractured Horizontal Wells in Shale Oil Reservoirs: An Analytical Method
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102907
. 10.1115/1.4043747
2.
Tariq
,
Z.
,
Mahmoud
,
M.
,
Abdulraheem
,
A.
,
Al-Shehri
,
D.
, and
Murtaza
,
M.
,
2020
, “
An Environment Friendly Approach to Reduce the Breakdown Pressure of High Strength Unconventional Rocks by Cyclic Hydraulic Fracturing
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
043002
. 10.1115/1.4045317
3.
Ge
,
Z.
,
Zuo
,
S.
,
Lu
,
Y.
,
Cao
,
S.
, and
Zhang
,
L.
,
2021
, “
Analytical and Experimental Investigation of Perforation Layout Parameters on Hydraulic Fracture Propagation
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
013005
10.1115/1.4047596.
4.
Wang
,
L.
, and
Wen
,
L.
,
2020
, “
Experimental Investigation on the Factors Affecting Proppant Flowback Performance
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
053001
. 10.1115/ 1.4045865
5.
Guo
,
D.
,
Zhao
,
Y.
,
Guo
,
Z.
,
Cui
,
X.
, and
Huang
,
B.
,
2020
, “
Theoretical and Experimental Determination of Proppant Crushing Rate and Fracture Conductivity
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
103005
. 10.1115/1.4047079
6.
He
,
Y.
,
Cheng
,
S.
,
Sun
,
Z.
,
Chai
,
Z.
, and
Rui
,
Z.
,
2020
, “
Improving Oil Recovery Through Fracture Injection and Production of Multiple Fractured Horizontal Wells
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
053002
. 10.1115/1.4045957
7.
Li
,
J.
,
Guo
,
B.
,
Gao
,
D.
, and
Ai
,
C.
,
2012
, “
The Effect of Fracture Face Matrix Damage on Productivity of Fractures With Infinite and Finite Conductivities in Shale Gas Reservoirs
,”
SPE Drill. Completion
,
27
(
3
). 10.2118/143304-MS
8.
Romero
,
D. J.
,
Valko
,
P. P.
, and
Economides
,
M. J.
,
2003
, “
Optimization of the Productivity Index and the Fracture Geometry of a Stimulated Well With Fracture Face and Choke Skins
,”
SPE Prod. Facil.
,
18
(
1
), pp.
57
64
. 10.2118/81908-PA
9.
Guo
,
B.
,
Shan
,
J.
, and
Feng
,
Y.
,
2014
, “
Productivity of Blast-Fractured Wells in Liquid-Rich Shale Gas Formations
,”
J. Nat. Gas Sci. Eng.
,
18
, pp.
360
367
. 10.1016/j.jngse.2014.03.018
10.
Li
,
J.
,
Guo
,
B.
,
Yang
,
S.
, and
Liu
,
G.
,
2014
, “
The Complexity of Thermal Effect on Rock Failure in Gas-Drilling Shale Gas Wells
,”
J. Nat. Gas Sci. Eng.
,
21
, pp.
255
259
. 10.1016/j.jngse.2014.08.011
11.
Moore
,
C. L.
, and
Lafave
,
V. A.
,
1956
, “
Air and Gas Drilling
,”
J. Pet. Technol.
,
8
(
2
), pp.
15
16
. 10.2118/494-G
12.
Supon
,
S. B.
, and
Adewumi
,
M. A.
,
1991
, “
Experimental Study of the Annulus Pressure Drop in Simulated Air-Drilling Operation
,”
SPE Drill. Completion
,
6
(
01
), pp.
74
80
. 10.2118/19334-PA
13.
Lyons
,
W. C.
,
Guo
,
B.
,
Graham
,
R. L.
, and
Hawley
,
G. D.
,
2009
,
Air and Gas Drilling Manual
, 3rd ed.,
Elsevier Publishing Company
,
Amsterdam
.
14.
Lyons
,
W. C.
,
Guo
,
B.
, and
Seidel
,
F. A.
,
2001
,
Air and Gas Drilling Manual
, 2nd ed.,
McGraw-Hill
,
New York
.
15.
Guo
,
B.
, and
Ghalambor
,
A.
,
2002
,
Gas Volume Requirements for Underbalanced Drilling Deviated Holes
,
PennWell Books
,
Tulsa, OK
.
16.
Gas Research Institute (GRI)
,
1997
,
Underbalanced Drilling Manual
,
Gas Research Institute Publication
,
Chicago, IL
.
17.
Guo
,
B.
,
Li
,
G.
,
Song
,
J.
, and
Li
,
J.
,
2017
, “
A Feasibility Study of gas-Lift Drilling in Unconventional Tight Oil and Gas Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
37
, pp.
551
559
. 10.1016/j.jngse.2016.11.057
18.
Li
,
L.
,
Ru
,
D.
,
Li
,
K.
, and
Yishan
,
W.
,
2006
, “
Research and Application of Reverse Circulation Drilling Technology
,”
SPE International Oil & Gas Conference and Exhibition in China
,
Beijing, China
,
Dec. 5
, pp.
1
7
. http://dx.doi.org/10.2118/104412-MS
19.
Hand
,
R.J.
,
Bishop
,
W.W.
, and
Perking
,
G.S.
,
1979
, “
Reverse Circulation Underreaming Utilizing Air Lift
,”
SPE California Regional Meeting
,
Ventura, CA
,
Apr. 18–20
, pp.
1
8
.
20.
Walker
,
S.
, and
Li
,
J.
,
2000
, “
Effect of Particle Size, Fluid Rheology and Pipe Eccentricity on Cuttings Transport
,”
SPE/ICoTA Coiled Tubing Roundtable
,
Houston, TX
,
Apr. 5–6
, pp.
1
10
. http://dx.doi.org/10.2118/60755-MS
21.
Yong
,
H.
,
Lihong
,
Z.
,
Deyong
,
Z.
,
Hualin
,
L.
,
Jinying
,
W.
,
Jinshen
,
Y.
,
Yuguang
,
Z.
, and
Zhibin
,
W.
,
2016
, “
Study on Structure Parameters of Reverse Circulation Drill Bit Secondary Injector Device Based on Injector Coefficient
,”
IADC/SPE Asia Pacific Drilling Technology Conference
,
Singapore
,
Aug. 22–24
, pp.
1
14
. http://dx.doi.org/10.2118/180539-MS.
22.
Chorin
,
A. J.
,
1968
, “
Numerical Solution of the Navier-Stokes Equations
,”
Math. Comp.
,
22
(
104
), pp.
745
762
. 10.12691/ajams-1-1-3
23.
Temam
,
R.
,
1969
, “
Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionaries (II)
,”
Arch. Ration. Mech. Anal.
,
33
(
5
), pp.
377
385
. 10.1007/BF00247696
24.
Guermond
,
J. L.
,
Minev
,
P.
, and
Shen
,
J.
,
2006
, “
An Overview of Projection Methods for Incompressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
44–47
), pp.
6011
6045
. 10.1016/j.cma.2005.10.010
25.
Goda
,
K.
,
1979
, “
A Multistep Technique With Implicit Difference Schemes for Calculating Two- or Three-Dimensional Cavity Flows
,”
J. Comput. Phys.
,
30
(
1
), pp.
76
95
. 10.1016/0021-9991(79)90088-3
26.
Langtangen
,
H. P.
, and
Logg
,
A.
,
2017
,
Solving PDEs in Python—The FEniCS Tutorial Volume I
,
Springer
,
New York
.
27.
Braess
,
D.
,
2007
,
Finite Elements
, 3rd ed.,
Cambridge University Press, Cambridge
.
28.
Brenner
,
S. C.
, and
Scott
,
L. R.
,
2008
,
The Mathematical Theory of Finite Element Methods, Volume 15 of Texts in Applied Mathematics
,
Springer
, 3rd ed.,
Springer, New York
.
29.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
,
1982
, “
High-Re Solutions for Incompressible Flow Using the Navier–Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
,
48
(
3
), pp.
387
411
. 10.1016/0021-9991(82)90058-4
You do not currently have access to this content.