Abstract

During the decades past, the engine industries have witnessed a remarkable upsurge in the research and development (R&D) of modern technologies due to factors such as energy security and environmental concerns. Focus is on improved engine performance, sustainable energy, fuel economy, and minimal harmful exhaust emissions. Even though globally large database now captures modern engine technologies, a skillful presentation of those data is a demanding task. Based on this analogy, the authors made a conscious effort to brief audience on the various fuels used in Wankel rotary engine (RE) which is a type of internal combustion engine (ICE). Wankel REs various operating models, their merits, and demerits regarding modern engine technologies, the type of fuels and their utilization methods, and the future prospect of biofuel as its engine fuel has been made accessible in a subtle manner in this paper. In summary, this paper provides a wide scope review of basic principles that govern practical Wankel RE design and operation, the widely used single fuels and multi fuels in Wankel RE operation with their properties as well as emissions, and the practical Wankel RE design and operation in the present era and the prospects in the near future. It also outlines simplified frameworks of modern Wankel RE technologies structured in a systematic way to contribute to enhanced engine performance, sustainable energy, reduce fuel consumption, and reduce exhaust emissions in this pragmatic field.

References

1.
Quarton
,
C. J.
,
Tlili
,
O.
,
Welder
,
L.
,
Mansilla
,
C.
,
Blanco
,
H.
,
Heinrichs
,
H.
,
Leaver
,
J.
,
Samsatli
,
N. J.
,
Lucchese
,
P.
,
Robinius
,
M.
, and
Samsatli
,
S.
,
2020
, “
The Curious Case of the Conflicting Roles of Hydrogen in Global Energy Scenarios
,”
Sustainable Energy Fuels
,
4
(
1
), pp.
80
95
. 10.1039/C9SE00833K
2.
Stover
,
L.
,
Piriou
,
B.
,
Caillol
,
C.
,
Higelin
,
P.
,
Proust
,
C.
,
Rouau
,
X.
, and
Vaïtilingom
,
G.
,
2019
, “
Direct Use of Biomass Powder in Internal Combustion Engines
,”
Sustainable Energy Fuels
,
3
(
10
), pp.
2763
2770
. 10.1039/C9SE00293F
3.
Singh
,
P.
,
Chauhan
,
S. R.
,
Goel
,
V.
, and
Gupta
,
A. K.
,
2020
, “
Enhancing Diesel Engine Performance and Reducing Emissions Using Binary Biodiesel Fuel Blend
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012201
. 10.1115/1.4044058
4.
Chokri
,
B.
,
Ridha
,
E.
,
Rachid
,
S.
, and
Jamel
,
B.
,
2012
, “
Experimental Study of a Diesel Engine Performance Running on Waste Vegetable Oil Biodiesel Blend
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032202
. 10.1115/1.4006655
5.
Yang
,
C. L.
,
Li
,
Q.
, and
Zhao
,
Y.
,
2013
, “
Problems and Countermeasures in the Popularization of China’s New Energy Vehicles Market
,”
Adv. Mater. Res.
,
805–806
, pp.
1627
1631
. 10.4028/www.scientific.net/AMR.805-806.1627
6.
Bae
,
C.
, and
Kim
,
J.
,
2016
, “
Alternative Fuels for Internal Combustion Engines
,”
Proc. Combust. Inst.
,
36
, p.
3
.
7.
Mueller
,
C. J.
,
Cannella
,
W. J.
, and
Kalghatgi
,
G. T.
,
2014
, “Fuels for Engines and the Impact of Fuel Composition on Engine Performance,”
Encyclopedia of Automotive Engineering
,
John Wiley and Sons Limited
.
8.
Gong
,
C.
,
Li
,
Z.
,
Yi
,
L.
,
Huang
,
K.
, and
Liu
,
F.
,
2020
, “
Research on the Performance of a Hydrogen/Methanol Dual-Injection Assisted Spark-Ignition Engine Using Late-Injection Strategy for Methanol
,”
Fuel
,
260
, p.
116403
. 10.1016/j.fuel.2019.116403
9.
Bohl
,
T.
,
Tian
,
G.
,
Smallbone
,
A.
, and
Roskilly
,
A. P.
,
2017
, “
Macroscopic Spray Characteristics of Next-Generation Bio-Derived Diesel Fuels in Comparison to Mineral Diesel
,”
Appl. Energy
,
186
(
3
), pp.
562
573
. 10.1016/j.apenergy.2016.10.082
10.
Herrmann
,
F.
,
Jochim
,
B.
,
Oßwald
,
P.
,
Cai
,
L.
,
Pitsch
,
H.
, and
Kohse-Höinghaus
,
K.
,
2014
, “
Experimental and Numerical Low-Temperature Oxidation Study of Ethanol and Dimethyl Ether
,”
Combust. Flame
,
161
(
2
), pp.
384
397
. 10.1016/j.combustflame.2013.09.014
11.
Aydın
,
S.
, and
Sayın
,
C.
,
2014
, “
Impact of Thermal Barrier Coating Application on the Combustion, Performance and Emissions of a Diesel Engine Fueled With Waste Cooking Oil Biodiesel–Diesel Blends
,”
Fuel
,
136
(
10
), pp.
334
340
. 10.1016/j.fuel.2014.07.074
12.
Agarwal
,
A. K.
,
Park
,
S.
,
Dhar
,
A.
,
Lee
,
C. S.
,
Park
,
S.
,
Gupta
,
T.
, and
Gupta
,
N. K.
,
2018
, “
Review of Experimental and Computational Studies on Spray, Combustion, Performance, and Emission Characteristics of Biodiesel Fueled Engines
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
120801
. 10.1115/1.4040584
13.
Rakopoulos
,
D. C.
,
Rakopoulos
,
C. D.
,
Giakoumis
,
E. G.
, and
Papagiannakis
,
R. G.
,
2018
, “
Evaluating Oxygenated Fuel’s Influence on Combustion and Emissions in Diesel Engines Using a Two-Zone Combustion Model
,”
J. Energy Eng.
,
144
(
4
),
04018046
. 10.1061/(ASCE)EY.1943-7897.0000556
14.
Singh
,
P.
,
Chauhan
,
S. R.
,
Goel
,
V.
, and
Gupta
,
A. K.
,
2019
, “
Binary Biodiesel Blend Endurance Characteristics in a Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032204
. 10.1115/1.4041545
15.
İşcan
,
B.
,
2016
, “
Application of Ceramic Coating for Improving the Usage of Cottonseed Oil in a Diesel Engine
,”
J. Energy Inst.
,
89
(
1
), pp.
150
157
. 10.1016/j.joei.2015.01.001
16.
Han
,
G.
,
Wang
,
A.
,
Han
,
L.
,
Cui
,
X.
,
Wu
,
X.
,
Wang
,
X.
, and
Liu
,
Y.
,
2019
, “
An Assembly of Carbon Dots and Carbon Sheets From Plant Biomass for Excellent Oxygen Reduction Reaction
,”
Sustainable Energy Fuels
,
3
(
11
), pp.
3172
3181
. 10.1039/C9SE00648F
17.
Cronshaw
,
I.
,
2014
, “
World Energy Outlook 2014 Projections to 2040: Natural Gas and Coal Trade, and the Role of China
,”
Aust. J. Agric. Resour. Econ.
,
59
(
4
), pp.
571
585
. 10.1111/1467-8489.12120
18.
Kalghatgi
,
G. T.
,
2015
, “
Developments in Internal Combustion Engines and Implications for Combustion Science and Future Transport Fuels
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
101
115
. 10.1016/j.proci.2014.10.002
19.
Müller-Langer
,
F.
,
Majer
,
S.
, and
O’Keeffe
,
S.
,
2014
, “
Benchmarking Biofuels—A Comparison of Technical, Economic and Environmental Indicators
,”
Energy Sustainability Soc.
,
4
(
1
), p.
20
. 10.1186/s13705-014-0020-x
20.
Chen
,
Z.
, and
Lee
,
W. G.
,
2019
, “
Electroporation for Microalgal Biofuels: A Review
,”
Sustainable Energy Fuels
,
3
(
11
), pp.
2954
2967
. 10.1039/C9SE00087A
21.
Larson
,
E. D.
,
2006
, “
A Review of Life-Cycle Analysis Studies on Liquid Biofuel Systems for the Transport Sector
,”
Energy Sustainable Dev.
,
10
(
2
), pp.
109
126
. 10.1016/S0973-0826(08)60536-0
22.
Chen
,
L.
,
Ni
,
H. J.
,
She
,
D. Q.
, and
Y. N.
Yuan
,
2014
, “
Current Research of Biodiesel Used on IC Engine and Improved Measures of Emissions
,”
Adv. Mater. Res.
,
887
, pp.
473
478
. 10.4028/www.scientific.net/amr.887-888.473
23.
Debnath
,
B. K.
,
Bora
,
B. J.
,
Sahoo
,
N.
, and
Saha
,
U. K.
,
2014
, “
Influence of Emulsified Palm Biodiesel as Pilot Fuel in a Biogas Run Dual Fuel Diesel Engine
,”
J. Energy Eng.
,
140
(
3
), p.
A4014005
. 10.1061/(asce)ey.1943-7897.0000163
24.
Hegab
,
A.
,
La Rocca
,
A.
, and
Shayler
,
P.
,
2017
, “
Towards Keeping Diesel Fuel Supply and Demand in Balance: Dual-Fuelling of Diesel Engines With Natural Gas
,”
Renewable Sustainable Energy Rev.
,
70
, pp.
666
697
. 10.1016/j.rser.2016.11.249
25.
Poorghasemi
,
K.
,
Saray
,
R. K.
,
Ansari
,
E.
,
Irdmousa
,
B. K.
,
Shahbakhti
,
M.
, and
Naber
,
J. D.
,
2017
, “
Effect of Diesel Injection Strategies on Natural Gas/Diesel RCCI Combustion Characteristics in a Light Duty Diesel Engine
,”
Appl. Energy
,
199
,
430
446
. 10.1016/j.apenergy.2017.05.011
26.
Rakopoulos
,
D. C.
,
Rakopoulos
,
C. D.
,
Giakoumis
,
E. G.
,
Komninos
,
N. P.
,
G. M.
Kosmadakis
, and
Papagiannakis
,
R. G.
,
2016
, “
Comparative Evaluation of Ethanol, n-Butanol, and Diethyl Ether Effects as Biofuel Supplements on Combustion Characteristics, Cyclic Variations, and Emissions Balance in Light-Duty Diesel Engine
,”
J. Energy Eng.
,
143
(
2
), p.
04016044
. 10.1061/(ASCE)EY.1943-7897.0000399
27.
Rakopoulos
,
D. C.
,
Rakopoulos
,
C. D.
,
Giakoumis
,
E. G.
,
Papagiannakis
,
R. G.
, and
Kyritsis
,
D. C.
,
2014
, “
Influence of Properties of Various Common Bio-Fuels on the Combustion and Emission Characteristics of High-Speed DI (Direct Injection) Diesel Engine: Vegetable Oil, Bio-Diesel, Ethanol, n-Butanol, Diethyl Ether
,”
Energy
,
73
(
9
), pp.
354
366
. 10.1016/j.energy.2014.06.032
28.
Rakopoulos
,
D. C.
,
Rakopoulos
,
C. D.
, and
Kyritsis
,
D. C.
,
2016
, “
Butanol or DEE Blends With Either Straight Vegetable Oil or Biodiesel Excluding Fossil Fuel: Comparative Effects on Diesel Engine Combustion Attributes, Cyclic Variability and Regulated Emissions Trade-off
,”
Energy
,
115
, pp.
314
325
. 10.1016/j.energy.2016.09.022
29.
Novaes
,
T. L. C. C.
,
Henríquez
,
J. R.
, and
Ochoa
,
A. A. V.
,
2019
, “
Numerical Simulation of the Performance of a Diesel Cycle Operating With Diesel-Biodiesel Mixtures
,”
Energy Convers. Manage.
,
180
, pp.
990
1000
. 10.1016/j.enconman.2018.11.039
30.
Satputaley
,
S. S.
,
Zodpe
,
D. B.
, and
Deshpande
,
N. V.
,
2016
, “
Performance, Combustion and Emission Study on CI Engine Using Microalgae Oil and Microalgae Oil Methyl Esters
,”
J. Energy Inst.
,
90
(
4
), p.
S1743967115304360
. 10.1016/j.joei.2016.05.011
31.
Ghahremani
,
A. R.
,
Saidi
,
M. H.
,
Hajinezhad
,
A.
, and
Mozafari
,
A. A.
,
2017
, “
Experimental Investigation of Spray Characteristics of a Modified Bio-Diesel in a Direct Injection Combustion Chamber
,”
Exp. Therm. Fluid. Sci.
,
81
, pp.
445
453
. 10.1016/j.expthermflusci.2016.09.010
32.
Aydın
,
H.
,
2016
, “
Scrutinizing the Combustion, Performance and Emissions of Safflower Biodiesel–Kerosene Fueled Diesel Engine Used as Power Source for a Generator
,”
Energy Convers. Manage.
,
117
, pp.
400
409
. 10.1016/j.enconman.2016.03.046
33.
İlkılıç
,
C.
,
Çılğın
,
E.
, and
Aydın
,
H.
,
2014
, “
Terebinth Oil for Biodiesel Production and Its Diesel Engine Application
,”
J. Energy Inst.
,
88
(
3
), pp.
292
303
. 10.1016/j.joei.2014.09.001
34.
Ramkumar
,
S.
, and
Kirubakaran
,
V.
,
2016
, “
Biodiesel From Vegetable Oil as Alternate Fuel for C.I Engine and Feasibility Study of Thermal Cracking: A Critical Review
,”
Energy Convers. Manage.
,
118
, pp.
155
169
. 10.1016/j.enconman.2016.03.071
35.
Balki
,
M. K.
,
Sayin
,
C.
, and
Canakci
,
M.
,
2014
, “
The Effect of Different Alcohol Fuels on the Performance, Emission and Combustion Characteristics of a Gasoline Engine
,”
Fuel
,
115
(
4
), pp.
901
906
. 10.1016/j.fuel.2012.09.020
36.
Kosmadakis
,
G. M.
,
Moreno
,
F.
,
Arroyo
,
J.
,
Muñoz
,
M.
, and
Rakopoulos
,
C. D.
,
2016
, “
Spark-Ignition Engine Fueled With Methane-Hydrogen Blends
,”
Green Energy Technol.
, pp.
405
420
. 10.1007/978-3-319-30127-3_31
37.
Li
,
J.
,
Gong
,
C.-M.
,
Su
,
Y.
,
Dou
,
H.-L.
, and
Liu
,
X.-J.
,
2010
, “
Effect of Injection and Ignition Timings on Performance and Emissions From a Spark-Ignition Engine Fueled With Methanol
,”
Fuel
,
89
(
12
), pp.
3919
3925
. 10.1016/j.fuel.2010.06.038
38.
Arroyo
,
J.
,
Moreno
,
F.
,
Muñoz
,
M.
, and
Monné
,
C.
,
2015
, “
Experimental Study of Ignition Timing and Supercharging Effects on a Gasoline Engine Fueled With Synthetic Gases Extracted From Biogas
,”
Energy Convers. Manage.
,
97
, pp.
196
211
. 10.1016/j.enconman.2015.03.061
39.
Ji
,
C.
,
Shi
,
C.
,
Wang
,
S.
,
Yang
,
J.
,
Su
,
T.
, and
Wang
,
D.
,
2019
, “
Effect of Dual-Spark Plug Arrangements on Ignition and Combustion Processes of a Gasoline Rotary Engine With Hydrogen Direct-Injection Enrichment
,”
Energy Convers. Manage.
,
181
, pp.
372
381
. 10.1016/j.enconman.2018.11.078
40.
Bhargav
,
H.
,
Patel
,
H.
, and
Kadivar
,
A.
,
2014
, “
A Review on Advanced Engines Technology
,”
Int. J. Eng. Sci. Res. Technol.
,
2277–9655
, pp.
82
87
.
41.
Parsons
,
C.
,
2010
, “
Rotary vs. Reciprocating Marine Engines: The Relative Advantages and Disadvantages of Rotary and Reciprocating Engines as Applied to Ship Propulsion
,”
Naval Eng. J.
,
9
(
3
), pp.
569
573
. 10.1111/j.1559-3584.1897.tb00286.x
42.
Otchere
,
P.
,
Pan
,
J.
,
Fan
,
B.
,
Chen
,
W.
,
Yao
,
L.
, and
Jianxing
,
L.
,
2020
, “
Mixture Formation and Combustion Process of a Bio-Diesel Fueled Direct Injection Rotary Engine (DIRE) Considering Injection Timing, Spark Timing and Equivalence Ratio—CFD Study
,”
Energy Convers. Manage
,
217
, pp.
1
17
. 10.1016/j.enconman.2020.112948
43.
Kai
,
J. M.
,
Foong
,
T. M.
,
Brear
,
M. J.
,
Silva
,
G. D.
,
Yi
,
Y.
, and
Dryer
,
F. L.
,
2013
, “
The Research and Motor Octane Numbers of Liquefied Petroleum Gas (LPG)
,”
Fuel
,
108
, pp.
797
811
. 10.1016/j.fuel.2013.01.072
44.
Ohzeki
,
H.
, and
Yamaguchi
,
T.
,
2014
, “
Present and Future of Rotary Engine Technology
,”
Int. J. Vehicle Des.
,
4
(
6
), pp.
571
586
. 10.1504/IJVD.1983.061307
45.
Ozcanli
,
M.
,
Bas
,
O.
,
Akar
,
M. A.
,
Yildizhan
,
S.
, and
Serin
,
H.
,
2018
, “
Recent Studies on Hydrogen Usage in Wankel SI Engine
,”
Int. J. Hydrogen Energy
,
43
(
38
), pp.
18037
18045
. 10.1016/j.ijhydene.2018.01.202
46.
Rajkumar
,
S.
, and
Thangaraja
,
J.
,
2019
, “
Effect of Biodiesel, Biodiesel Binary Blends, Hydrogenated Biodiesel and Injection Parameters on NOx and Soot Emissions in a Turbocharged Diesel Engine
,”
Fuel
,
240
, pp.
101
118
. 10.1016/j.fuel.2018.11.141
47.
Pachiannan
,
T.
,
Zhong
,
W.
,
Rajkumar
,
S.
,
He
,
Z.
,
Leng
,
X.
, and
Wang
,
Q.
,
2019
, “
A Literature Review of Fuel Effects on Performance and Emission Characteristics of Low-Temperature Combustion Strategies
,”
Appl. Energy
,
251
, p.
113380
. 10.1016/j.apenergy.2019.113380
48.
Yuan
,
X.
,
Liu
,
X.
, and
Zuo
,
J.
,
2015
, “
The Development of New Energy Vehicles for a Sustainable Future: A Review
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
298
305
. 10.1016/j.rser.2014.10.016
49.
Tu
,
J.
,
Wayne
,
W. S.
, and
Perhinschi
,
M. G.
,
2013
, “
Correlation Analysis of Duty Cycle Effects on Exhaust Emissions and Fuel Economy
,”
J. Transp. Res. Forum
,
52
(
1
), pp.
1
20
. 10.5399/osu/jtrf.52.1.4136
50.
Basshuysen
,
R.
,
1978
, “An Update of the Development on the New Audi NSU Rotary Engine Generation,”
SAE Technical Paper
.
51.
Mount
,
R.
, and
Greiner
,
W.
,
2013
, “
High Performance, Stratified Charge Rotary Engines for General Aviation
,”
American Institute of Aeronautics and Astronautics 22nd Joint Propulsion Conference
,
Huntsville, AL
,
June 16–18
.
52.
Kagawa
,
R.
,
Okazaki
,
S.
,
Somyo
,
N.
, and
Akagi
,
Y.
,
1993
, “
A Study of a Direct-Injection Stratified-Charge Rotary Engine for Motor Vehicle Application
,”
Nasa Sti/recon Technical Report A
,
93
.
53.
Tashima
,
S.
,
Okimoto
,
H.
,
Fujimoto
,
Y.
, and
Nakao
,
M.
,
1994
, “
Sequential Twin Turbocharged Rotary Engine of the Latest RX-7
,”
International Congress and Exposition
,
Detroit, MI
,
Feb. 28–Mar. 3
.
54.
Fan
,
B.
,
Pan
,
J.
,
Yang
,
W.
,
Chen
,
W.
, and
Bani
,
S.
,
2017
, “
The Influence of Injection Strategy on Mixture Formation and Combustion Process in a Direct Injection Natural Gas Rotary Engine
,”
Appl. Energy
,
187
, pp.
663
674
. 10.1016/j.apenergy.2016.11.106
55.
Otchere
,
P.
,
Pan
,
J.
,
Fan
,
B.
,
Chen
,
W.
,
Yao
,
L.
, and
Jianxing
,
L.
,
2019
, “
Numerical Investigation of the Effect of Advance Ignition Timing on Combustion Process in Direct Injection Rotary Engine Fueled With Biodiesel
,”
Environ. Prog. Sustainable Energy
,
39
(
3
), pp.
1
14
. 10.1002/ep.13368
56.
Ceviz
,
M. A.
, and
Yüksel
,
F.
,
2014
, “
Cyclic Variations on LPG and Gasoline-Fuelled Lean Burn SI Engine
,”
Renewable Energy
,
31
(
12
), pp.
1950
1960
. 10.1016/j.renene.2005.09.016
57.
Muroki
,
T.
,
Moriyoshi
,
Y.
, and
Song
,
Y. W.
,
2000
, “
Combustion Characteristics of Spark Ignition and Pilot Flame Ignition System in a Stratified Charge Engine
,”
Proc. Inst. Mech. Eng. Part D: J. Auto. Eng.
,
2000
(
4
), pp.
319
320
. 10.1299/jsmemecjo.2000.4.0_319
58.
Kweon
,
C. B. M.
,
2011
, “
A Review of Heavy-Fueled Rotary Engine Combustion Technologies
,”
Army Research Laboratory
,
Aberdeen Proving Ground, MD
.
59.
Thomassin
,
J.
,
Ullyott
,
R.
, and
Julien
,
A.
,
2014
, “
Multi-rotor Rotary Engine Architecture
,”
Patent/US8707929B2
.
60.
Feller
,
F.
,
1970
, “
The 2-Stage Rotary Engine—A New Concept in Diesel Power
,”
Proc. Inst. Mech. Eng.
,
185
(
1970
), pp.
139
158
. 10.1243/PIME_PROC_1970_185_022_02
61.
Su
,
T.
,
Ji
,
C.
,
Wang
,
S.
,
Shi
,
L.
,
Yang
,
J.
, and
Cong
,
X.
,
2017
, “
Improving Idle Performance of a Hydrogen-Gasoline Rotary Engine at Stoichiometric Condition
,”
Int. J. Hydrogen Energy
,
42
(
16
), pp.
11893
11901
. 10.1016/j.ijhydene.2017.01.220
62.
Su
,
T.
,
Ji
,
C.
,
Wang
,
S.
,
Shi
,
L.
,
Yang
,
J.
, and
Cong
,
X.
,
2017
, “
Investigation on Performance of a Hydrogen-Gasoline Rotary Engine at Part Load and Lean Conditions
,”
Appl. Energy
,
205
, pp.
683
691
. 10.1016/j.apenergy.2017.08.049
63.
Shi
,
C.
,
Ji
,
C.
,
Ge
,
Y.
,
Wang
,
S.
,
Bao
,
J.
, and
Yang
,
J.
,
2019
, “
Numerical Study on Ignition Amelioration of a Hydrogen-Enriched Wankel Engine Under Lean-Burn Condition
,”
Appl. Energy
,
255
, pp.
1
12
. 10.1016/j.apenergy.2019.113800
64.
Ohkubo
,
M.
,
Tashima
,
S.
,
Shimizu
,
R.
,
Fuse
,
S.
, and
Ebino
,
H.
,
2004
, “
Developed Technologies of the New Rotary Engine (RENESIS)
,”
SAE Technical Paper, Report No. 0148-7191
.
65.
Chen
,
W.
,
Pan
,
J.
,
Zuo
,
Q.
,
Zhang
,
J.
,
Wang
,
Z.
,
Zhang
,
B.
,
Zhu
,
G.
, and
Fan
,
B.
,
2020
, “
Combustion Performance Improvement of a Diesel Fueled Wankel Stratified-Charge Combustion Engine by Optimizing Assisted Ignition Strategy
,”
Energy Convers. Manage.
,
205
, pp.
1
12
. 10.1016/j.enconman.2019.112324
66.
Dunnrankin
,
D.
,
2016
,
Lean Combustion: Technology and Control
, 2nd ed.,
Academic Press
,
Irvine, CA
, pp.
1
280
.
67.
Muroki
,
T.
,
Moriyoshi
,
Y.
, and
Takagi
,
M.
,
2002
, “
Combustion Characteristics of a Direct Injection Stratified Charge Rotary Engine Using Spark Ignition and Pilot Flame Ignition Systems
,”
SAE Technical Paper
.
68.
Jones
,
C.
,
1992
, “
Stratified Charge Rotary Engine Developments at JDTI From 1984 to 1991
,”
International Congress & Exposition, SAE Technical Paper
,
Detroit, MI
,
Feb. 24–28
.
69.
Muroki
,
T.
,
Moriyoshi
,
Y.
,
Takagi
,
M.
,
Kou
,
S.
, and
Imai
,
M.
,
2001
, “
Research and Development of a Direct Injection Stratified Charge Rotary Engine With a Pilot Flame Ignition System
,”
Small Engine Technology Conference & Exposition
,
Pisa, Italy
,
Nov. 28–30
.
70.
Rakopoulos
,
D. C.
,
2011
, “
Heat Release Analysis of Combustion in Heavy-Duty Turbocharged Diesel Engine Operating on Blends of Diesel Fuel With Cottonseed or Sunflower Oils and Their Bio-Diesel
,”
Fuel
,
90
(
7
), pp.
524
534
. 10.1016/j.fuel.2011.12.063
71.
Yamamoto
,
K.
, and
Muroki
,
T.
,
1978
, “
Development on Exhaust Emissions and Fuel Economy of the Rotary Engine at Toyo Kogyo
,”
Proc. SPIE-Int. Soc. Opt. Eng.
,
4014
, pp.
320
325
. 10.4271/780417
72.
Jenkins
,
P. E.
,
1992
, “
Compounded Turbocharged Rotary Internal Combustion Engine Fueled With Natural Gas
,”
US Patent 05056315
.
73.
Kumar
,
M. L.
, and
Amba
,
R. K.
,
2014
, “
An Improved Rotary Mechanism Engine
,”
Def. Sci. J.
,
27
(
1
), pp.
43
52
. 10.14429/dsj.27.6656
74.
Shapovalov
,
V.
,
1999
, “
The Two-Stroke Rotary Engine for Start Systems and Small Planes
,”
Aerospace Power Systems Conference, SAE Technical Paper
,
United States
,
April 6
.
75.
Reitz
,
R. D.
, and
Kokjohn
,
S. L.
,
2015
, “
Fuel Reactivity Stratification in Rotary Diesel Engines
,”
US Patent 9,057,321
.
76.
Shi
,
C.
,
Ji
,
C.
,
Wang
,
S.
,
Yang
,
J.
,
Ma
,
Z.
, and
Meng
,
H.
,
2020
, “
Potential Improvement in Combustion Behavior of a Downsized Rotary Engine by Intake Oxygen Enrichment
,”
Energy Convers. Manage.
,
205
, pp.
1
15
. 10.1016/j.enconman.2019.112433
77.
Abraham
,
J.
,
Wey
,
M. J.
, and
Bracco
,
F. V.
,
1988
, “
Pressure non-Uniformity and Mixing Characteristics in Stratified-Charge Rotary Engine Combustion
,”
J. Engines
,
97
(
6
), pp.
1146
1159
. https://www.jstor.org/stable/44547445
78.
Liang
,
L.
,
2011
, “
Rotary Engine With Two Rotors and Its Design Method
,”
SAE Technical Paper
,
Guangdong Province, China
,
Nov. 10, 2007
.
79.
Mazda
, and
Deere
,
John
,
1989
,
Rotary Engine Design: Analysis and Developments
,
Society of Automotive Engineers, Inc
,
Detroit
, pp.
1
131
.
80.
Yang
,
J.
,
Ji
,
C.
,
Wang
,
S.
,
Wang
,
D.
,
Ma
,
Z.
, and
Ma
,
L.
,
2018
, “
A Comparative Study of Mixture Formation and Combustion Processes in a Gasoline Wankel Rotary Engine With Hydrogen Port and Direct Injection Enrichment
,”
Energy Convers. Manage.
,
168
, pp.
21
31
. 10.1016/j.enconman.2018.04.105
81.
Chen
,
W.
,
Pan
,
J.
,
Fan
,
B.
,
Liu
,
Y.
, and
Peter
,
O.
,
2017
, “
Effect of Injection Strategy on Fuel-air Mixing and Combustion Process in a Direct Injection Diesel Rotary Engine (DI-DRE)
,”
Energy Convers. Manage.
,
154
, pp.
68
80
. 10.1016/j.enconman.2017.10.048
82.
Fan
,
B.
,
Pan
,
J.
,
Liu
,
Y.
, and
Zhu
,
Y.
,
2015
, “
Effects of Ignition Parameters on Combustion Process of a Rotary Engine Fueled With Natural Gas
,”
Energy Convers. Manage.
,
103
(
4
), pp.
218
234
. 10.1016/j.enconman.2015.06.055
83.
Pan
,
J.
,
Chen
,
W.
,
Yang
,
W.
,
Xiao
,
M.
,
Zhu
,
Y.
, and
Fan
,
B.
,
2017
, “
Effects of Intake and Exhaust Valve Timing on the Performance of an Air-Powered Rotary Engine
,”
Environ. Prog. Sustainable Energy
,
37
(
4
), pp.
1
13
. 10.1002/ep.12797
84.
Su
,
T.
,
Ji
,
C.
,
Wang
,
S.
,
Cong
,
X.
, and
Shi
,
L.
,
2018
, “
Enhancing Idle Performance of an n-Butanol Rotary Engine by Hydrogen Enrichment
,”
Int. J. Hydrogen Energy
,
43
(
12
), pp.
6434
6442
. 10.1016/j.ijhydene.2018.01.200
85.
Morita
,
T.
,
Hamady
,
F.
,
Stuecken
,
T.
,
Somerton
,
C.
, and
Schock
,
H.
,
1991
, “
Fuel-Air Mixing Visualization in a Motored Rotary Engine Assembly
,”
J. Engines
,
100
(
3
), pp.
1185
1205
. https://www.jstor.org/stable/44554472
86.
Cichanowicz
,
J. E.
, and
Sawyer
,
R. F.
,
1976
, “
Rotary Engine Combustion With Hydrogen Addition
,”
1
.
87.
Su
,
T.
,
Ji
,
C.
,
Wang
,
S.
,
Shi
,
L.
,
Yang
,
J.
, and
Cong
,
X.
,
2018
, “
Idle Performance of a Hydrogen Rotary Engine at Different Excess Air Ratios
,”
Int. J. Hydrogen Energy
,
43
(
4
), pp.
2443
2451
. 10.1016/j.ijhydene.2017.12.028
88.
Pan
,
J.
,
Chen
,
R.
,
Fan
,
B.
,
Yao
,
J.
, and
Xiao
,
M.
,
2015
, “
Affecting Factors on Combustion Progress in LPG Rotary Engine
,”
Trans. Chin. Soc. Agric. Mach.
,
46
(
1
), pp.
329
337
.
89.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Education
.
90.
Gong
,
C.
,
Deng
,
B.
,
Shu
,
W.
,
Yan
,
S.
,
Gao
,
Q.
, and
Liu
,
X.
,
2008
, “
Investigation on Firing Behavior of the Spark-Ignition Engine Fueled With Methanol, Liquefied Petroleum Gas (LPG), and Methanol/LPG During Cold Start
,”
Energy Fuels
,
22
(
6
), pp.
3779
3784
. 10.1021/ef800471h
91.
Niaz
,
S.
,
Manzoor
,
T.
, and
Pandith
,
A. H.
,
2015
, “
Hydrogen Storage: Materials, Methods and Perspectives
,”
Renewable Sustainable Energy Rev.
,
50
, pp.
457
469
. 10.1016/j.rser.2015.05.011
92.
Boretti
,
A.
,
Jiang
,
S.
, and
Scalzo
,
J.
,
2015
, “
A Novel Wankel Engine Featuring Jet Ignition and Port or Direct Injection for Faster and More Complete Combustion Especially Designed for Gaseous Fuels
,”
SAE Technical Papers
,
7
(
1
), pp.
41
48
.
93.
Salanki
,
P. A.
, and
Wallace
,
J. S.
,
1996
, “
Evaluation of the Hydrogen-Fueled Rotary Engine for Hybrid Vehicle Applications
,”
SAE Technical Paper
.
94.
Morimoto
,
K.
,
Teramoto
,
T.
, and
Takamori
,
Y.
,
1992
, “
Combustion Characteristics in Hydrogen Fueled Rotary Engine
,”
SAE Technical Paper
.
95.
U.S. Department of Energy
,
2019
,
Clean Cities Alternative Fuel Price Report, January 2019
,
U.S. Department of Energy
,
United States
, pp.
1
27
.
96.
Fan
,
B.
,
Pan
,
J.
,
Tang
,
A.
,
Pan
,
Z.
, and
Xue
,
H.
,
2015
, “
Influence of Port Timing on Flow Field and Combustion Process of Natural Gas-Fueled Rotary Engines
,”
Trans. Chin. Soc. Agric. Mach.
,
46
(
7
), pp.
286
293
.
97.
Fan
,
B. W.
,
Pan
,
J. F.
,
Pan
,
Z. H.
,
Tang
,
A. K.
,
Zhu
,
Y. J.
, and
Xue
,
H.
,
2015
, “
Effects of Pocket Shape and Ignition Slot Locations on the Combustion Processes of a Rotary Engine Fueled With Natural Gas
,”
Appl. Therm. Eng.
,
89
, pp.
11
27
. 10.1016/j.applthermaleng.2015.05.078
98.
Fan
,
B.
,
Pan
,
J.
,
Yang
,
W.
,
Liu
,
Y.
,
Bani
,
S.
, and
Chen
,
W.
,
2017
, “
Numerical Investigation of the Effect of Injection Strategy on Mixture Formation and Combustion Process in a Port Injection Natural Gas Rotary Engine
,”
Energy Convers. Manage.
,
133
, pp.
511
523
. 10.1016/j.enconman.2016.10.070
99.
Fan
,
B.
,
Pan
,
J.
,
Yang
,
W.
,
Pan
,
Z.
,
Bani
,
S.
,
Chen
,
W.
, and
He
,
R.
,
2017
, “
Combined Effect of Injection Timing and Injection Angle on Mixture Formation and Combustion Process in a Direct Injection (DI) Natural Gas Rotary Engine
,”
Energy
,
128
, pp.
519
530
. 10.1016/j.energy.2017.04.052
100.
AEGPL (Association Européenne des Gaz de Pétrole Liquéfiés)
,
2009
,
European LPG Association, Autogas in Europe, the Sustainable Alternative: An LPG Industry Roadmap
, 2013,
European LPG Association
,
Brussels
, pp.
1
40
.
101.
Kamo
,
R.
,
Yamada
,
T. Y.
, and
Hamada
,
Y.
,
1987
, “Starting Low Compression Ratio Rotary Wankel Diesel Engine,”
Society of Automotive Engineers
,
Warrendale, PA
.
102.
Pan
,
J.
,
Xiao
,
M.
,
Fan
,
B.
, and
Pan
,
Z.
,
2016
, “
Effect of Valve Timing on Wankel Rotor Air-Powered Engine
,”
J. Jiangsu Univ
,
37
(
2
), pp.
141
146
.
103.
Lu
,
Y.
,
Pan
,
J.
,
Fan
,
B.
,
Otchere
,
P.
,
Chen
,
W.
, and
Cheng
,
B.
,
2019
, “
Research on the Application of Aviation Kerosene in a Direct Injection Rotary Engine-Part 1: Fundamental Spray Characteristics and Optimized Injection Strategies
,”
Energy Convers. Manage.
,
195
, pp.
519
532
. 10.1016/j.enconman.2019.05.042
104.
Lu
,
Y.
,
Pan
,
J.
,
Fan
,
B.
,
Otchere
,
P.
,
Chen
,
W.
, and
Cheng
,
B.
,
2020
, “
Research on the Application of Aviation Kerosene in a Direct Injection Rotary Engine—Part 2: Spray Combustion Characteristics and Combustion Process Under Optimized Injection Strategies
,”
Energy Convers. Manage.
,
203
, pp.
1
12
. 10.1016/j.enconman.2019.112217
105.
Jones
,
C.
,
Ellis
,
D.
, and
Meng
,
P.
,
2013
, “
Multi-Fuel Rotary Engine for General Aviation Aircraft
,”
Nineteenth Joint Propulsion Conference
,
Seattle, WA
,
June 27–29, 1983
.
106.
Ji
,
C.
,
Su
,
T.
,
Wang
,
S.
,
Zhang
,
B.
,
Yu
,
M.
, and
Cong
,
X.
,
2016
, “
Effect of Hydrogen Addition on Combustion and Emissions Performance of a Gasoline Rotary Engine at Part Load and Stoichiometric Conditions
,”
Energy Convers. Manage.
,
121
, pp.
272
280
. 10.1016/j.enconman.2016.05.040
107.
Fedyanov
,
E. A.
,
Zakharov
,
E. A.
,
Prikhodkov
,
K. V.
, and
Levin
,
Y. V.
,
2017
, “
Modelling of Flame Propagation in the Gasoline Fuelled Wankel Rotary Engine With Hydrogen Additives
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
177
, p.
012076
. 10.1088/1757-899X/177/1/012076
108.
Pan
,
J.
,
Lu
,
Y.
,
Huang
,
M.
,
Otchere
,
P.
,
Chen
,
W.
, and
Fan
,
B.
,
2019
, “
Effect of Different Hydrogen Blending Ratios on Combustion Process of Gasoline-Fueled Rotary Engine
,”
Environ. Prog. Sustainable Energy
,
38
(
5
), pp.
1
13
. 10.1002/ep.13200
109.
Amrouche
,
F.
,
Erickson
,
P.
,
Park
,
J.
, and
Varnhagen
,
S.
,
2014
, “
An Experimental Investigation of Hydrogen-Enriched Gasoline in a Wankel Rotary Engine
,”
Int. J. Hydrogen Energy
,
39
(
16
), pp.
8525
8534
. 10.1016/j.ijhydene.2014.03.172
110.
Su
,
T.
,
Ji
,
C.
,
Wang
,
S.
,
Shi
,
L.
,
Yang
,
J.
, and
Cong
,
X.
,
2017
, “
Idle Performance of a Hydrogen/Gasoline Rotary Engine at Lean Condition
,”
Int. J. Hydrogen Energy
,
42
(
17
), pp.
12696
12705
. 10.1016/j.ijhydene.2017.03.198
111.
Su
,
T.
,
Ji
,
C.
,
Wang
,
S.
,
Shi
,
L.
,
Yang
,
J.
, and
Cong
,
X.
,
2017
, “
Reducing the Idle Speed of a Gasoline Rotary Engine With Hydrogen Addition
,”
Int. J. Hydrogen Energy
,
42
(
36
), p.
S0360319917329920
. 10.1016/j.ijhydene.2017.07.156
112.
Su
,
T.
,
Ji
,
C.
,
Wang
,
S.
,
Shi
,
L.
,
Yang
,
J.
, and
Cong
,
X.
,
2017
, “
Effect of Spark Timing on Performance of a Hydrogen-Gasoline Rotary Engine
,”
Energy Convers. Manage.
,
148
, pp.
120
127
. 10.1016/j.enconman.2017.05.064
113.
Su
,
T.
,
Ji
,
C.
,
Wang
,
S.
,
Cong
,
X.
, and
Shi
,
L.
,
2018
, “
Improving the Combustion Performance of a Gasoline Rotary Engine by Hydrogen Enrichment at Various Conditions
,”
Int. J. Hydrogen Energy
,
43
(
3
), pp.
1902
1908
. 10.1016/j.ijhydene.2017.11.175
114.
Amrouche
,
F.
,
Erickson
,
P. A.
,
Park
,
J. W.
, and
Varnhagen
,
S.
,
2016
, “
Extending the Lean Operation Limit of a Gasoline Wankel Rotary Engine Using Hydrogen Enrichment
,”
Int. J. Hydrogen Energy
,
41
(
32
), pp.
14261
14271
. 10.1016/j.ijhydene.2016.06.250
115.
Amrouche
,
F.
,
Erickson
,
P. A.
,
Varnhagen
,
S.
, and
Park
,
J. W.
,
2018
, “
An Experimental Analysis of Hydrogen Enrichment on Combustion Characteristics of a Gasoline Wankel Engine at Full Load and Lean Burn Regime
,”
Int. J. Hydrogen Energy
,
43
(
41
), pp.
19250
19259
. 10.1016/j.ijhydene.2018.08.110
116.
Su
,
T.
,
Ji
,
C.
,
Wang
,
S.
,
Cong
,
X.
,
Shi
,
L.
, and
Yang
,
J.
,
2018
, “
Improving the Lean Performance of an n-Butanol Rotary Engine by Hydrogen Enrichment
,”
Energy Convers. Manage.
,
157
, pp.
96
102
. 10.1016/j.enconman.2017.12.005
117.
Masum
,
B. M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Fattah
,
I. M. R.
,
Palash
,
S. M.
, and
Abedin
,
M. J.
,
2013
, “
Effect of Ethanol–Gasoline Blend on NOx Emission in SI Engine
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
209
222
. 10.1016/j.rser.2013.03.046
118.
Zhang
,
B.
,
Ji
,
C.
, and
Wang
,
S.
,
2016
, “
Performance of a Hydrogen-Enriched Ethanol Engine at Unthrottled and Lean Conditions
,”
Energy Convers. Manage.
,
114
, pp.
68
74
. 10.1016/j.enconman.2016.01.073
119.
Amrouche
,
F.
,
Erickson
,
P. A.
,
Varnhagen
,
S.
, and
Park
,
J. W.
,
2016
, “
An Experimental Study of a Hydrogen-Enriched Ethanol Fueled Wankel Rotary Engine at Ultra Lean and Full Load Conditions
,”
Energy Convers. Manage.
,
123
, pp.
174
184
. 10.1016/j.enconman.2016.06.034
120.
Su
,
T.
,
Ji
,
C.
,
Wang
,
S.
,
Cong
,
X.
, and
Shi
,
L.
,
2018
, “
Research on Performance of a Hydrogen/n-Butanol Rotary Engine at Idling and Varied Excess Air Ratios
,”
Energy Convers. Manage.
,
162
, pp.
132
138
. 10.1016/j.enconman.2018.02.042
121.
Fan
,
B.
,
Pan
,
J.
,
Yang
,
W.
,
Zhu
,
Y.
, and
Chen
,
W.
,
2016
, “
Effects of Hydrogen Blending Mode on Combustion Process of a Rotary Engine Fueled With Natural Gas/Hydrogen Blends
,”
Int. J. Hydrogen Energy
,
41
(
6
), pp.
4039
4053
. 10.1016/j.ijhydene.2016.01.006
122.
Fan
,
B.
,
Pan
,
J.
,
Liu
,
Y.
,
Zhu
,
Y.
,
Pan
,
Z.
,
Chen
,
W.
, and
Otchere
,
P.
,
2018
, “
Effect of Hydrogen Injection Strategies on Mixture Formation and Combustion Process in a Hydrogen Direct Injection Plus Natural Gas Port Injection Rotary Engine
,”
Energy Convers. Manage.
,
160
, pp.
150
164
. 10.1016/j.enconman.2018.01.034
123.
Fan
,
B.
,
Pan
,
J.
,
Liu
,
Y.
,
Chen
,
W.
,
Lu
,
Y.
, and
Otchere
,
P.
,
2018
, “
Numerical Investigation of Mixture Formation and Combustion in a Hydrogen Direct Injection Plus Natural Gas Port Injection (HDI + NGPI) Rotary Engine
,”
Int. J. Hydrogen Energy
,
43
(
9
), pp.
4632
4644
. 10.1016/j.ijhydene.2018.01.065
124.
Fan
,
B.
,
Zhang
,
Y.
,
Pan
,
J.
,
Liu
,
Y.
,
Chen
,
W.
,
Otchere
,
P.
,
Wei
,
A.
, and
He
,
R.
,
2018
, “
The Influence of Hydrogen Injection Strategy on Mixture Formation and Combustion Process in a Port Injection (PI) Rotary Engine Fueled With Natural Gas/Hydrogen Blends
,”
Energy Convers. Manage.
,
173
, pp.
527
538
. 10.1016/j.enconman.2018.08.002
125.
Chen
,
W.
,
Pan
,
J.
,
Fan
,
B.
,
Otchere
,
P.
,
Miao
,
N.
, and
Lu
,
Y.
,
2018
, “
Numerical Investigation of Dual-Fuel Injection Timing on Air-Fuel Mixing and Combustion Process in a Novel Natural Gas-Diesel Rotary Engine
,”
Energy Convers. Manage.
,
176
, pp.
334
348
. 10.1016/j.enconman.2018.09.050
126.
Chen
,
W.
,
Pan
,
J.
,
Liu
,
Y.
,
Fan
,
B.
,
Liu
,
H.
, and
Otchere
,
P.
,
2019
, “
Numerical Investigation of Direct Injection Stratified Charge Combustion in a Natural Gas-Diesel Rotary Engine
,”
Appl. Energy
,
233–234
, pp.
453
467
. 10.1016/j.apenergy.2018.10.038
127.
Patel
,
C.
,
Hwang
,
J.
,
Chandra
,
K.
,
Agarwal
,
R. A.
,
Bae
,
C.
,
Gupta
,
T.
, and
Agarwal
,
A. K.
,
2019
, “
In-Cylinder Spray and Combustion Investigations in a Heavy-Duty Optical Engine Fueled With Waste Cooking Oil, Jatropha, and Karanja Biodiesels
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012201
. 10.1115/1.4040579
128.
Shancita
,
I.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Fattah
,
I. M. R.
,
Rashed
,
M. M.
, and
Rashedul
,
H. K.
,
2014
, “
A Review on Idling Reduction Strategies to Improve Fuel Economy and Reduce Exhaust Emissions of Transport Vehicles
,”
Energy Convers. Manage.
,
88
, pp.
794
807
. 10.1016/j.enconman.2014.09.036
129.
Alley
,
R. B.
,
Berntsen
,
T.
,
Bindoff
,
N. L.
,
Chen
,
Z.
,
Chidthaisong
,
A.
,
Friedlingstein
,
P.
,
Gregory
,
J. M.
,
Hegerl
,
G. C.
,
Heimann
,
M.
, and
Hewitson
,
B.
,
2018
,
IPCC, 2018: Summary for Policymakers
,
Cambridge University Press
.
130.
Onozaki
,
M.
, and
Ukegawa
,
K.
,
2008
, “
Energy Technology Strategy for Stable Supply and Efficient Clean Use of Fossil Fuel
,”
J. Japan Inst. Energy
,
87
(
2
), pp.
40
47
.
131.
Qiang
,
Z.
,
Na
,
L.
, and
Li
,
M.
,
2016
, “
Combustion and Emission Characteristics of an Electronically-Controlled Common-Rail Dual-Fuel Engine
,”
J. Energy Inst.
,
89
(
4
), pp.
766
781
. 10.1016/j.joei.2015.03.012
132.
Olivier
,
J.
,
Janssens-Maenhout
,
G.
,
Muntean
,
M.
, and
Peters
,
J.
,
2012
, “
Trends in Global CO2 Emissions: 2015 Report
,”
Maenhout
.
133.
den Elzen
,
M. G. J.
,
Olivier
,
J. G. J.
,
Höhne
,
N.
, and
Janssens-Maenhout
,
G.
,
2013
, “
Countries’ Contributions to Climate Change: Effect of Accounting for All Greenhouse Gases, Recent Trends, Basic Needs and Technological Progress
,”
Clim. Change
,
121
(
2
), pp.
397
412
. 10.1007/s10584-013-0865-6
134.
2008
, “
Strategies for Reducing CO2 Emissions in the Transportation Sector
,”
Ministry of Transport
,
Germany
.
135.
Anderson
,
D. C.
,
Loughner
,
C. P.
,
Diskin
,
G.
,
Weinheimer
,
A.
,
Canty
,
T. P.
,
Salawitch
,
R. J.
,
Worden
,
H. M.
,
Fried
,
A.
,
Mikoviny
,
T.
, and
Wisthaler
,
A.
,
2014
, “
Measured and Modeled CO and NO y in DISCOVER-AQ: An Evaluation of Emissions and Chemistry Over the Eastern US
,”
Atmos. Environ.
,
96
, pp.
78
87
. 10.1016/j.atmosenv.2014.07.004
136.
Surhone
,
L. M.
,
Tennoe
,
M. T.
, and
Henssonow
,
S. F.
,
2011
,
Paul Moller
.
137.
Shimizu
,
R.
,
Okimoto
,
H.
,
Tashima
,
S.
, and
Fuse
,
S.
,
1995
, “
The Characteristics of Fuel Consumption and Exhaust Emissions of the Side Exhaust Port Rotary Engine
,”
SAE Technical Paper
.
138.
Laser
,
M.
, and
Lynd
,
L. R.
,
2014
, “
Comparative Efficiency and Driving Range of Light- and Heavy-Duty Vehicles Powered With Biomass Energy Stored in Liquid Fuels or Batteries
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
9
), pp.
3360
3364
. 10.1073/pnas.1314039111
139.
Morone
,
P.
,
2016
, “
The Times They Are a-Changing: Making the Transition Toward a Sustainable Economy
,”
Biofuels Bioprod. Bior.
,
10
(
4
), pp.
369
377
. 10.1002/bbb.1647
140.
Singh
,
A.
,
Nigam
,
P. S.
, and
Murphy
,
J. D.
,
2011
, “
Renewable Fuels From Algae: An Answer to Debatable Land Based Fuels
,”
Bioresour. Technol.
,
102
(
1
), pp.
10
16
. 10.1016/j.biortech.2010.06.032
141.
Demirbas
,
M. F.
,
2011
, “
Biofuels From Algae for Sustainable Development
,”
Appl. Energy
,
88
(
10
), pp.
3473
3480
. 10.1016/j.apenergy.2011.01.059
142.
Sagues
,
W. J.
,
Park
,
S.
,
Jameel
,
H.
, and
Sanchez
,
D. L.
,
2019
, “
Enhanced Carbon Dioxide Removal From Coupled Direct Air Capture–Bioenergy Systems
,”
Sustainable Energy Fuels
,
3
(
11
), pp.
3135
3146
. 10.1039/C9SE00384C
143.
Fontes
,
S.
,
2010
,
Biofuels: Policies, Standards and Technologies
, 2010,
World Energy Council for Sustainable Energy
,
Petrobras, Brazil
, pp.
1
152
.
144.
Avinash
,
A.
,
Subramaniam
,
D.
, and
Murugesan
,
A.
,
2014
, “
Bio-Diesel—A Global Scenario
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
517
527
. 10.1016/j.rser.2013.09.007
145.
Hélaine
,
S.
,
M’Barek
,
R.
, and
Gay
,
S. H.
,
2013
, “
Impacts of the EU Biofuel Policy on Agricultural Markets and Land Use—Modelling Assessment With AGLINK-COSIMO (2012 Version)
,”
JRC Working Papers
.
146.
Raboni
,
M.
,
Torretta
,
V.
, and
Urbini
,
G.
,
2013
, “
The Future of Biofuels for a Sustainable Mobility
,”
World Sustain. Forum
, p.
f009
. 10.3390/wsf3-f009
147.
Chum
,
H. L.
,
Warner
,
E.
,
Seabra
,
J. E. A.
, and
Macedo
,
I. C.
,
2014
, “
A Comparison of Commercial Ethanol Production Systems From Brazilian Sugarcane and US Corn
,”
Biofuels Bioprod. Bior.
,
8
(
2
), pp.
205
223
. 10.1002/bbb.1448
148.
Strogen
,
B.
,
Horvath
,
A.
, and
Mckone
,
T. E.
,
2012
, “
Fuel Miles and the Blend Wall: Costs and Emissions From Ethanol Distribution in the United States
,”
Environ. Sci. Technol.
,
46
(
10
), pp.
5285
5293
. 10.1021/es204547s
149.
Szybist
,
J.
,
2011
, “
Enabling High Efficiency Ethanol Engines
,”
Office of Scientific & Technical Information Technical Reports
.
150.
Etghani
,
M. M.
,
Shojaeefard
,
M. H.
,
Khalkhali
,
A.
, and
M.
Akbari
,
2013
, “
A Hybrid Method of Modified NSGA-II and TOPSIS to Optimize Performance and Emissions of a Diesel Engine Using Biodiesel
,”
Appl. Therm. Eng.
,
59
(
1–2
), pp.
309
315
. 10.1016/j.applthermaleng.2013.05.041
151.
Jaichandar
,
S.
, and
Annamalai
,
K.
,
2011
, “
The Status of Biodiesel as an Alternative Fuel for Diesel Engine—An Overview
,”
J. Sustainable Energy Environ
,
2
, pp.
71
75
. Corpus ID: 26504783
152.
Li
,
D.
,
He
,
Z.
,
Xuan
,
T.
,
Zhong
,
W.
,
Cao
,
J.
,
Wang
,
Q.
, and
Wang
,
P.
,
2017
, “
Simultaneous Capture of Liquid Length of Spray and Flame Lift-off Length for Second-Generation Biodiesel/Diesel Blended Fuel in a Constant Volume Combustion Chamber
,”
Fuel
,
189
, pp.
260
269
. 10.1016/j.fuel.2016.10.058
153.
Coronado
,
C. R.
,
Villela
,
A. D. C.
, and
Silveira
,
J. L.
,
2010
, “
Ecological Efficiency in CHP: Biodiesel Case
,”
Appl. Therm. Eng.
,
30
(
5
), pp.
458
463
. 10.1016/j.applthermaleng.2009.10.006
154.
Selvan
,
T.
, and
Nagarajan
,
G.
,
2013
, “
Combustion and Emission Characteristics of a Diesel Engine Fuelled With Biodiesel Having Varying Saturated Fatty Acid Composition
,”
Int. J. Green Energy
,
10
(
9
), pp.
952
965
. 10.1080/15435075.2012.732157
155.
Chang
,
Y.
,
Jia
,
M.
,
Li
,
Y.
,
Zhang
,
Y.
,
Xie
,
M.
,
Wang
,
H.
, and
Reitz
,
R. D.
,
2015
, “
Development of a Skeletal Oxidation Mechanism for Biodiesel Surrogate
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3037
3044
. 10.1016/j.proci.2014.09.009
156.
Chen
,
H.
,
Xie
,
B.
,
Ma
,
J.
, and
Chen
,
Y.
,
2018
, “
NOx Emission of Biodiesel Compared to Diesel: Higher or Lower?
,”
Appl. Therm. Eng.
,
137
, pp.
584
593
. 10.1016/j.applthermaleng.2018.04.022
157.
Hess
,
M. A.
,
Haas
,
M. J.
,
Foglia
,
T. A.
, and
Marmer
,
W. N.
,
2005
, “
Effect of Antioxidant Addition on NOx Emissions From Biodiesel
,”
Energy Fuels
,
19
(
4
), pp.
1749
1754
. 10.1021/ef049682s
158.
Szybist
,
J. P.
,
Kirby
,
S. R.
, and
Boehman
,
A. L.
,
2005
, “
NOX Emissions of Alternative Diesel Fuels: A Comparative Analysis of Biodiesel and FT Diesel
,”
Energy Fuels
,
19
(
4
), pp.
1484
1492
. 10.1021/ef049702q
159.
Mohsin
,
R.
,
Majid
,
Z. A.
,
Shihnan
,
A. H.
,
Nasri
,
N. S.
, and
Sharer
,
Z.
,
2014
, “
Effect of Biodiesel Blends on Engine Performance and Exhaust Emission for Diesel Dual Fuel Engine
,”
Energy Convers. Manage.
,
88
, pp.
821
828
. 10.1016/j.enconman.2014.09.027
160.
Wang
,
P.
,
Jia
,
M.
,
Zhang
,
Y.
,
Xu
,
G.
,
Chang
,
Y.
, and
Xu
,
Z.
,
2019
, “
Development of a Decoupling Physical-Chemical Surrogate (DPCS) Model for Simulation of the Spray and Combustion of Multi-Component Biodiesel Fuels
,”
Fuel
,
240
, pp.
16
30
. 10.1016/j.fuel.2018.11.134
161.
Melo-Espinosa
,
E. A.
,
Piloto-Rodríguez
,
R.
,
Sánchez-Borroto
,
Y.
, and
Verhelst
,
S.
,
2017
, “
Effect of Emulsified Fuels Based on Fatty Acid Distillates on Single Cylinder Diesel Engine Performance and Exhaust Emissions
,”
Appl. Therm. Eng.
,
120
, pp.
187
195
. 10.1016/j.applthermaleng.2017.03.133
162.
Tamilselvan
,
P.
,
Nallusamy
,
N.
, and
Rajkumar
,
S.
,
2017
, “
A Comprehensive Review on Performance, Combustion and Emission Characteristics of Biodiesel Fuelled Diesel Engines
,”
Renewable Sustainable Energy Rev.
,
79
, pp.
1134
1159
. 10.1016/j.rser.2017.05.176
163.
Gautam
,
R.
,
Shyam
,
S.
,
Reddy
,
B. R.
,
Govindaraju
,
K.
, and
Vinu
,
R.
,
2019
, “
Microwave-Assisted Pyrolysis and Analytical Fast Pyrolysis of Macroalgae: Product Analysis and Effect of Heating Mechanism
,”
Sustainable Energy Fuels
,
3
(
11
), pp.
3009
3020
. 10.1039/C9SE00162J
164.
Selvakumar
,
P.
, and
Umadevi
,
K.
,
2016
, “
Biomass Production of Multipopulation Microalgae in Open Air Pond for Biofuel Potential
,”
Indian J. Exp. Biol.
,
54
(
4
), p.
271
.
165.
Gurau
,
V. S.
,
Deep
,
A.
, and
Sandhu
,
S. S.
,
2017
, “
Experimental Investigation on Use of Bitter Apricot Kernel Biodiesel Blends in Single Cylinder Diesel Engine
,”
Biofuels Bioenergy
, pp.
133
142
. 10.1007/978-3-319-47257-7_13
166.
Rechtin
,
M.
,
2007
, “
Mazda Seeks to Change the Shape of the Rotary Engine
,”
Automotive News
.
167.
Hubmann
,
C.
,
Beste
,
F.
,
Friedl
,
H.
, and
Schoffmann
,
W.
,
2013
, “
Single Cylinder 25kW Range Extender as Alternative to a Rotary Engine Maintaining High Compactness and NVH Performance
,”
Papers; Automotive_Sector
.
168.
Chen
,
Z.
,
Xia
,
B.
,
You
,
C.
, and
Mi
,
C. C.
,
2015
, “
A Novel Energy Management Method for Series Plug-in Hybrid Electric Vehicles
,”
Appl. Energy
,
145
, pp.
172
179
. 10.1016/j.apenergy.2015.02.004
169.
Vortisch
,
P.
,
Chlond
,
B.
,
Weiß
,
C.
, and
Mallig
,
N.
Retrieved 2015-05-18
,” (June
2015
), “
Electric Vehicles With Range Extender as a Suitable Technology (EVREST)
,”
Karlsruher Institut für Technologie
.
170.
Salkeld
,
G.
,
2013
, “
Unmanned Aerial Vehicle (UAV) and Method
,”
EP
.
171.
2015
,
Aircraft Deployment and Retrieval of Unmanned Aerial Vehicles
,
The Boeing Company
.
172.
Matlala
,
P.
, and
Pedro
,
J. O.
,
2016
, “
Design of DDP Controller for Autonomous Autorotative Landing of RWUAV Following an Engine Failure
,”
Control Applications
,
Buenos Aires, Argentina
,
September
, pp.
9
14
.
You do not currently have access to this content.