Abstract

Thermal energy storage (TES) has become a key component in combined heat and power (CHP) generation, which enhances the load regulation capability and overall thermal performance. In line with that concept, the present work addresses a numerical study that aims at investigating and predicting the transient thermal behavior of a water thermocline storage tank that integrates into a CHP plant. Investigations are carried out on two distinct two-dimensional models. The first model studies thermocline characteristics of the heat storage system through a single-charge/discharge operation. The influences of various operating parameters such as the inlet flowrate and the inlet temperature of HTF are investigated. Results indicate that the thermocline thickness increases as the inlet flowrate increases, and consequently, the heat storage/release period decreases. The second modified model discusses the technique of simultaneous charging and discharging operation applied in the CHP unit. Two types of operations are analyzing with (a) stable charging with steady discharging and (b) periodic charging with steady discharging. The results ravel out that the mixing ratio of charging and discharging flowrate (Qc/Qd) has a strong influence on the operation performance. When the ratio of Qc/Qd >1, the thermocline forms, and its thickness increases with time. The thermocline thickness remains constant as this ratio declines to 0.625. In the case of periodic charging, both larger charging flowrate and shorter non-charging periods result in maintaining the discharge outlet temperature of HTF stable for the heat-supply net, and discharge performance improved.

References

1.
Tariq
,
R.
,
Hussain
,
Y.
,
Sheikh
,
N. A.
,
Afaq
,
K.
, and
Ali
,
H. M.
,
2020
, “
Regression-Based Empirical Modeling of Thermal Conductivity of CuO-Water Nanofluid Using Data-Driven Techniques
,”
Int. J. Thermophys.
,
41
(
4
), pp.
1
28
. 10.1007/s10765-020-2619-9
2.
Tariq
,
R.
,
Sheikh
,
N. A.
,
Bassam
,
A.
, and
Xamán
,
J.
,
2019
, “
Analysis of Maisotsenko Humid air Bottoming Cycle Employing Mixed Flow air Saturator
,”
Heat Mass Transfer
,
55
(
5
), pp.
1477
1489
. 10.1007/s00231-018-2531-z
3.
Tariq
,
R.
,
Zhan
,
C.
,
Sheikh
,
N. A.
, and
Zhao
,
X.
,
2018
, “
Thermal Performance Enhancement of a Cross-Flow-Type Maisotsenko Heat and Mass Exchanger Using Various Nanofluids
,”
Energies
,
11
(
10
), p.
2656
. 10.3390/en11102656
4.
Tariq
,
R.
,
Sheikh
,
N. A.
,
Xamán
,
J.
, and
Bassam
,
A.
,
2019
, “
Recovering Waste Energy in an Indirect Evaporative Cooler—A Case for Combined Space air Conditioning for Human Occupants and Produce Commodities
,”
Build. Environ.
,
152
(
1
), pp.
105
121
. 10.1016/j.buildenv.2019.01.038
5.
Tariq
,
R.
,
Sohani
,
A.
,
Xamán
,
J.
,
Sayyaadi
,
H.
,
Bassam
,
A.
, and
Tzuc
,
O. M.
,
2019
, “
Multi-Objective Optimization for the Best Possible Thermal, Electrical and Overall Energy Performance of a Novel Perforated-Type Regenerative Evaporative Humidifier
,”
Energy Convers. Manag.
,
198
(
6
), p.
111802
. 10.1016/j.enconman.2019.111802
6.
Tariq
,
R.
,
Zhan
,
C.
,
Zhao
,
X.
, and
Sheikh
,
N. A.
,
2018
, “
Numerical Study of a Regenerative Counter Flow Evaporative Cooler Using Alumina Nanoparticles in wet Channel
,”
Energy Build.
,
169
(
3
), pp.
430
443
. 10.1016/j.enbuild.2018.03.086
7.
Tariq
,
R.
, and
Sheikh
,
N. A.
,
2018
, “
Numerical Heat Transfer Analysis of Maisotsenko Humid Air Bottoming Cycle—A Study Towards the Optimization of the Air-Water Mixture at Bottoming Turbine Inlet
,”
Appl. Therm. Eng.
,
133
, pp.
49
60
. 10.1016/j.applthermaleng.2018.01.024
8.
Tariq
,
R.
,
Sheikh
,
N. A.
,
Xamán
,
J.
, and
Bassam
,
A.
,
2018
, “
An Innovative air Saturator for Humidification-Dehumidification Desalination Application
,”
Appl. Energy
,
228
(
c
), pp.
789
807
. 10.1016/j.apenergy.2018.06.135
9.
Sun
,
F.
,
Cheng
,
L.
,
Fu
,
L.
, and
Gao
,
J.
,
2017
, “
New Low Temperature Industrial Waste Heat District Heating System Based on Natural Gas Fired Boilers with Absorption Heat Exchangers
,”
Appl. Therm. Eng.
,
125
, pp.
1437
1445
. 10.1016/j.applthermaleng.2017.07.134
10.
Mostafavi
,
S. S.
,
Saffar-avval
,
M.
,
Behboodi
,
S.
, and
Mansoori
,
Z.
,
2013
, “
Hourly Energy Analysis and Feasibility Study of Employing a Thermocline TES System for an Integrated CHP and DH Network
,”
Energy Convers. Manag.
,
68
(
2
), pp.
281
292
. 10.1016/j.enconman.2013.01.020
11.
Katarzyna Borowiec
,
M. E.
,
Wysocki
,
A.
,
Shaner
,
S.
, and
Greenwood
,
M. S.
,
2019
, “
Increasing Revenue of Nuclear Power Plants With Thermal Storage
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042006
. 10.1115/1.4044800
12.
Zhao
,
X.
,
Fu
,
L.
,
Li
,
F.
, and
Liu
,
H.
,
2014
, “
Design and Operation of a Tri-Generation System for a Station in China
,”
Energy Convers. Manag.
,
80
(
2
), pp.
391
397
. 10.1016/j.enconman.2014.01.019
13.
Wang
,
T.
,
Zhang
,
Y.
,
Peng
,
Z.
, and
Shu
,
G.
,
2011
, “
A Review of Researches on Thermal Exhaust Heat Recovery with Rankine Cycle
,”
Renewable Sustainable Energy Rev.
,
15
(
6
), pp.
2862
2871
. 10.1016/j.rser.2011.03.015
14.
Bianchi
,
M.
,
De Pascale
,
A.
, and
Melino
,
F.
,
2013
, “
Performance Analysis of an Integrated CHP System with Thermal and Electric Energy Storage for Residential Application
,”
Appl. Energy
,
112
(
c
), pp.
928
938
. 10.1016/j.apenergy.2013.01.088
15.
Wang
,
H.
,
Yin
,
W.
,
Abdollahi
,
E.
,
Lahdelma
,
R.
, and
Jiao
,
W.
,
2015
, “
Modelling and Optimization of CHP Based District Heating System with Renewable Energy Production and Energy Storage
,”
Appl. Energy
,
159
(
c
), pp.
401
421
. 10.1016/j.apenergy.2015.09.020
16.
Zhao
,
B.
,
Cheng
,
M.
,
Liu
,
C.
, and
Dai
,
Z.
,
2018
, “
System-Level Performance Optimization of Molten-Salt Packed-bed Thermal Energy Storage for Concentrating Solar Power
,”
Appl. Energy
,
226
(
c
), pp.
225
239
. 10.1016/j.apenergy.2018.05.081
17.
Karim
,
A.
,
Burnett
,
A.
, and
Fawzia
,
S.
,
2018
, “
Investigation of Stratified Thermal Storage Tank Performance for Heating and Cooling Applications
,”
Energies
,
11
(
5
), p.
1049
. 10.3390/en11051049
18.
Haller
,
M. Y.
,
Cruickshank
,
C. A.
,
Streicher
,
W.
,
Harrison
,
S. J.
,
Andersen
,
E.
, and
Furbo
,
S.
,
2009
, “
Methods to Determine Stratification Efficiency of Thermal Energy Storage Processes—Review and Theoretical Comparison
,”
Sol. Energy
,
83
(
10
), pp.
1847
1860
. 10.1016/j.solener.2009.06.019
19.
Osman
,
K.
,
Al Khaireed
,
S. M. N.
,
Ariffin
,
M. K.
, and
Senawi
,
M. Y.
,
2008
, “
Dynamic Modeling of Stratification for Chilled Water Storage Tank
,”
Energy Convers. Manag.
,
49
(
11
), pp.
3270
3273
. 10.1016/j.enconman.2007.09.035
20.
Nelson
,
J. E. B.
,
Balakrishnan
,
A. R.
, and
Srinivasa Murthy
,
S.
,
1999
, “
Experiments on Stratified Chilled-Water Tanks
,”
Int. J. Refrig.
,
22
(
3
), pp.
216
234
. 10.1016/S0140-7007(98)00055-3
21.
Karim
,
M. A.
,
2011
, “
Experimental Investigation of a Stratified Chilled-Water Thermal Storage System
,”
Appl. Therm. Eng.
,
31
(
11–12
), pp.
1853
1860
. 10.1016/j.applthermaleng.2010.12.019
22.
He
,
Z.
,
Qian
,
Y.
,
Xu
,
C.
,
Yang
,
L.
, and
Du
,
X.
,
2019
, “
Static and Dynamic Thermocline Evolution in the Water Thermocline Storage Tank
,”
Energy Procedia
,
158
(
2018
), pp.
4471
4476
. 10.1016/j.egypro.2019.01.766
23.
Cabeza
,
L. F.
,
Ibáñez
,
M.
,
Solé
,
C.
,
Roca
,
J.
, and
Nogués
,
M.
,
2006
, “
Experimentation With a Water Tank Including a PCM Module
,”
Sol. Energy Mater. Sol. Cells
,
90
(
9
), pp.
1273
1282
. 10.1016/j.solmat.2005.08.002
24.
Castell
,
A.
,
Solé
,
C.
,
Medrano
,
M.
,
Nogués
,
M.
, and
Cabeza
,
L. F.
,
2009
, “
Comparison of Stratification in a Water Tank and a PCM-Water Tank
,”
ASME J. Sol. Energy Eng.
,
131
(
2
), pp.
0245011
0245015
. 10.1115/1.3097277
25.
Nithyanandam
,
K.
,
Pitchumani
,
R.
, and
Mathur
,
A.
,
2014
, “
Analysis of a Latent Thermocline Storage System With Encapsulated Phase Change Materials for Concentrating Solar Power
,”
Appl. Energy
,
113
(
c
), pp.
1446
1460
. 10.1016/j.apenergy.2013.08.053
26.
Nallusamy
,
N.
,
Sampath
,
S.
, and
Velraj
,
R.
,
2007
, “
Experimental Investigation on a Combined Sensible and Latent Heat Storage System Integrated with Constant/Varying (Solar) Heat Sources
,”
Renewable Energy
,
32
(
7
), pp.
1206
1227
. 10.1016/j.renene.2006.04.015
27.
Kumar
,
G. S.
,
Nagarajan
,
D.
,
Chidambaram
,
L. A.
,
Kumaresan
,
V.
,
Ding
,
Y.
, and
Velraj
,
R.
,
2016
, “
Role of PCM Addition on Stratification Behaviour in a Thermal Storage Tank—An Experimental Study
,”
Energy
,
115
(
p1
), pp.
1168
1178
. 10.1016/j.energy.2016.09.014
28.
Oró
,
E.
,
Castell
,
A.
,
Chiu
,
J.
,
Martin
,
V.
, and
Cabeza
,
L. F.
,
2013
, “
Stratification Analysis in Packed bed Thermal Energy Storage Systems
,”
Appl. Energy
,
109
(
c
), pp.
476
487
. 10.1016/j.apenergy.2012.12.082
29.
He
,
Z.
,
Wang
,
X.
,
Du
,
X.
,
Amjad
,
M.
,
Yang
,
L.
, and
Xu
,
C.
,
2019
, “
Experiments on Comparative Performance of Water Thermocline Storage Tank with and Without Encapsulated Paraffin Wax Packed Bed
,”
Appl. Therm. Eng.
,
147
, pp.
188
197
. 10.1016/j.applthermaleng.2018.10.051
30.
Wu
,
S.
,
Fang
,
G.
, and
Liu
,
X.
,
2011
, “
Dynamic Discharging Characteristics Simulation on Solar Heat Storage System with Spherical Capsules Using Paraffin as Heat Storage Material
,”
Renewable Energy
,
36
(
4
), pp.
1190
1195
. 10.1016/j.renene.2010.10.012
31.
Fahad Khan
,
B. J. S.
,
2017
, “
Plate Diffuser Performance in Spherical Tank Thermocline Storage System
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), pp.
1
7
. 10.1115/1.4033503
32.
Ji
,
Y.
, and
Homan
,
K. O.
,
2007
, “
On Simplified Models for the Rate-and Time-Dependent Performance of Stratified Thermal Storage
,”
ASME J. Energy Resour. Technol.
,
129
(
3
), pp.
214
222
. 10.1115/1.2748814
33.
He
,
Z.
,
Wang
,
X.
,
Du
,
X.
,
Xu
,
C.
, and
Yang
,
L.
,
2019
, “
Cyclic Characteristics of Water Thermocline Storage Tank with Encapsulated PCM Packed Bed
,”
Int. J. Heat Mass Transf.
,
139
, pp.
1077
1086
. 10.1016/j.ijheatmasstransfer.2019.05.093
34.
Wang
,
X.
,
He
,
X.
,
Xu
,
Z.
, and
Du
,
C.
,
2019
, “
Dynamic Simulations on Simultaneous Charging/Discharging Process of Water Thermocline Storage Tank
,”
Proc. Chinese Soc. Electr. Eng.
,
39
(
20
), pp.
1
9
.
35.
Du
,
X.
,
He
,
Z.
,
Wang
,
X.
,
Xu
,
C.
, and
Yang
,
L.
,
2018
, “
Unsteady Characteristics of Water Thermocline Storage Tank with Encapsulated Paraffin Wax Packed Bed
,”
Int. Heat Transf. Conf.
,
2018
, pp.
4287
4294
. 10.1615/ihtc16.ecs.022477
36.
Yin
,
H.
,
Ding
,
J.
, and
Yang
,
X.
,
2014
, “
Experimental Research on Thermal Characteristics of a Hybrid Thermocline Heat Storage System
,”
Appl. Therm. Eng.
,
62
(
1
), pp.
293
301
. 10.1016/j.applthermaleng.2013.09.018
You do not currently have access to this content.