Abstract

In this study, an experimental investigation was presented on the oxidation behaviors of bituminous coal for different inert gases (N2 and CO2) at different concentrations (oxygen concentration indexes 21%, 18.4%, 15.8%, and 13.1%) using a temperature-programmed experimental device. The purpose of this research was to examine the oxidation patterns of bituminous coal under different inert conditions. The results showed that: (1) the oxidative heating of the coal underwent two stages: an initial slow heating stage and a fast heating stage. The injection of both inert gases would result in a delay in the crossing point temperature (CPT) of the coal, but the injection of N2 resulted in greater delays in the CPT of the coal; (2) the injection of both N2 and CO2 inhibited the concentrations of CO and alkane/olefin gases produced from the oxidative heating of the coal, with CO2 displaying higher inhibition efficiencies than that of N2; (3) Under a non-inerting environment, the C2H4 and C2H6 generation temperatures were 110 °C and 100 °C. Under an inerting environment, when N2 was injected, the higher the N2 concentration, the higher the initial C2H4 and C2H6 generation temperatures; when CO2 was injected, the higher the CO2 concentration, the lower the initial C2H4 and C2H6 generation temperatures; and (4) under a non-inerting environment, the C3H8 generation temperature was 90 °C; and when an inert gas was injected, there was a hysteresis in the C3H8 generation temperature for all concentrations. The above research results can be used to predict the spontaneous combustion of residual coal in an inert environment and prevent fires.

References

1.
Kong
,
B.
,
Li
,
Z.
,
Yang
,
Y.
,
Liu
,
Z.
, and
Yan
,
D.
,
2017
, “
A Review on the Mechanism, Risk Evaluation, and Prevention of Coal Spontaneous Combustion in China
,”
Environ. Sci. Pollut. Res.
,
24
(
30
), pp.
23453
23470
. 10.1007/s11356-017-0209-6
2.
Xiu
,
Z.
,
Nie
,
W.
,
Yan
,
J.
,
Chen
,
D.
,
Cai
,
P.
,
Liu
,
Q.
,
Du
,
T.
, and
Yang
,
B.
,
2020
, “
Numerical Simulation Study on Dust Pollution Characteristics and Optimal Dust Control Air Flow Rates During Coal Mine Production
,”
J. Cleaner Prod.
, p.
249
. https://doi.org/10.1016/j.jclepro.2019.119197
3.
Bao
,
Q.
,
Nie
,
W.
,
Liu
,
C.
,
Zhang
,
H.
,
Wang
,
H.
,
Jin
,
H.
,
Yan
,
J.
, and
Liu
,
Q.
,
2020
, “
The Preparation of a Novel Hydrogel Based on Crosslinked Polymers for Suppressing Coal Dusts
,”
J. Cleaner Prod.
, p.
249
. https://doi.org/10.1016/j.jclepro.2019.119343
4.
Sun
,
L.
,
Zhang
,
Y.
,
Wang
,
Y.
, and
Liu
,
Q.
,
2019
, “
Study on the Reoxidation Characteristics of Soaked and Air-Dried Coal
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022203
. 10.1115/1.4041407
5.
Qi
,
X.
,
Li
,
Q.
,
Zhang
,
H.
, and
Xin
,
H.
,
2017
, “
Thermodynamic Characteristics of Coal Reaction Under Low Oxygen Concentration Conditions
,”
J. Energy Inst.
,
90
(
4
), pp.
544
555
. 10.1016/j.joei.2016.05.007
6.
Wang
,
G.
,
Liu
,
Q.
,
Sun
,
L.
,
Song
,
X.
,
Du
,
W.
,
Yan
,
D.
, and
Wang
,
Y.
,
2018
, “
Secondary Spontaneous Combustion Characteristics of Coal Based on Programed Temperature Experiments
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082204
. https://doi.org/10.1115/1.4039659
7.
Wang
,
Y.
,
Schaffers
,
W. C.
,
Tan
,
S.
,
Kim
,
J. S.
, and
Boardman
,
R. D.
,
2020
, “
Low Temperature Heating and Oxidation to Prevent Spontaneous Combustion Using Powder River Basin Coal
,”
Fuel Process. Technol.
,
199
. https://doi.org/10.1016/j.fuproc.2019.106221
8.
Wojtacha-Rychter
,
K.
, and
Smolinski
,
A.
,
2018
, “
The Interaction Between Coal and Multi-Component Gas Mixtures in the Process of Coal Heating at Various Temperatures: An Experimental Study
,”
Fuel
,
213
, pp.
150
157
. 10.1016/j.fuel.2017.10.115
9.
Zhang
,
Y.
,
Wang
,
J.
,
Wu
,
J.
,
Xue
,
S.
,
Li
,
Z.
, and
Chang
,
L.
,
2015
, “
Modes and Kinetics of CO2 and CO Production From Low-Temperature Oxidation of Coal
,”
Int. J. Coal Geol.
,
140
, pp.
1
8
. 10.1016/j.coal.2015.01.001
10.
Du
,
W.
,
Wang
,
Y.
,
Liu
,
X.
, and
Sun
,
L.
,
2018
, “
Study on Low Temperature Oxidation Characteristics of Oil Shale Based on Temperature Programmed System
,”
Energies
,
11
(
10
), p.
2594
. https://doi.org/10.3390/en11102594
11.
Feser
,
J. S.
, and
Gupta
,
A.K.
,
2018
, “
Effect of CO2/N2 Dilution on Premixed Methane–Air Flame Stability Under Strained Conditions
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072207
. 10.1115/1.4039326
12.
Yan
,
K.
, and
Meng
,
X.
,
2020
, “
An Investigation on the Aluminum Dust Explosion Suppression Efficiency and Mechanism of a NaHCO3/DE
,”
Compos. Powder
,
31
(
8
), pp.
3246
3255
. 10.1016/j.apt.2020.06.014
13.
Ren
,
L.
,
Deng
,
J.
,
Li
,
Q.
,
Ma
,
L.
,
Zou
,
L.
,
Bin
,
L.
, and
Shu
,
C.
,
2019
, “
Low-Temperature Exothermic Oxidation Characteristics and Spontaneous Combustion Risk of Pulverised Coal
,”
Fuel
,
252
, pp.
238
245
. 10.1016/j.fuel.2019.04.108
14.
Baris
,
K.
,
Kizgut
,
S.
, and
Didari
,
V.
,
2012
, “
Low-Temperature Oxidation of Some Turkish Coals
,”
Fuel
,
93
(
1
), pp.
423
432
. 10.1016/j.fuel.2011.08.066
15.
Lu
,
W.
,
Cao
,
Y.
,
Huang
,
Z.
,
Tien
,
J.
, and
Qin
,
B.
,
2017
, “
Study on Adiabatic Oxidation Characters of Coal With Applying a Constant Temperature Difference To Guide the Oxidation of Coal With Temperature Rising
,”
Energy Fuels
,
31
(
1
), pp.
882
890
. 10.1021/acs.energyfuels.6b02247
16.
Du
,
W.
,
Hu Niu
,
K.
,
Wang
,
H.
,
Zhang
,
Y.
, and
Song
,
H.
,
2021
, “
Experiment and Field Application of Inhibitior Liquid in Spontaneous Combustion Process of Coal Based on Thermogravimetric Analysis
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022304
. https://doi.org/10.1115/1.4048076
17.
Zhang
,
Y.
,
Chen
,
L.
,
Zhao
,
J.
,
Deng
,
J.
, and
Yang
,
H.
,
2019
, “
Evaluation of the Spontaneous Combustion Characteristics of Coal of Different Metamorphic Degrees Based on a Temperature-Programmed Oil Bath Experimental System
,”
J. Loss Prev. Process Ind.
,
60
, pp.
17
27
. 10.1016/j.jlp.2019.03.007
18.
Masoudian
,
M.
,
Airey
,
D.
, and
El-Zein
,
A.
,
2016
, “
The Role of Coal Seam Properties on Coupled Processes During CO2 Sequestration: A Parametric Study
,”
Greenh. Gases-Sci. Technol.
,
6
(
4
), pp.
492
518
. 10.1002/ghg.1575
19.
Qin
,
Y.
,
Liu
,
W.
,
Yang
,
C.
,
Fan
,
Z.
,
Wang
,
L.
, and
Jia
,
G.
,
2012
, “
Experimental Study on Oxygen Consumption Rate of Residual Coal in Goaf
,”
Saf. Sci.
,
50
(
4
), pp.
787
791
. 10.1016/j.ssci.2011.08.033
20.
Guo
,
J.
,
Wen
,
H.
,
Liu
,
Y.
, and
Jin
,
Y.
,
2019
, “
Data on Analysis of Temperature Inversion During Spontaneous Combustion of Coal
,”
Data Brief
,
25
, p.
104304
. 10.1016/j.dib.2019.104304
21.
Xu
,
Y.
,
Wang
,
D.
,
Wang
,
L.
,
Zhong
,
X.
, and
Chu
,
T.
,
2012
, “
Experimental Research on Inhibition Performances of the Sand-Suspended Colloid for Coal Spontaneous Combustion
,”
Saf. Sci.
,
50
(
4
), pp.
822
827
. 10.1016/j.ssci.2011.08.026
22.
Du
,
W.
,
Wang
,
G.
,
Wang
,
Y.
, and
Liu
,
X.
,
2019
, “
Thermal Degradation of Bituminous Coal With Both Model-Free and Model Fitting Methods
,”
Appl. Therm. Eng.
,
152
, pp.
169
174
. 10.1016/j.applthermaleng.2019.02.092
23.
Liu
,
Q.
,
Chai
,
J.
,
Chen
,
S.
,
Zhang
,
D.
,
Yuan
,
Q.
, and
Wang
,
S.
,
2020
, “
Monitoring and Correction of the Stress in an Anchor Bolt Based on Pulse Pre-Pumped Brillouin Optical Time Domain Analysis
,”
Energy
,
00
, pp.
1
13
. https://doi.org/10.1002/ese3.644
24.
Cai
,
P.
,
Nie
,
W.
,
Chen
,
D.
,
Yang
,
S.
, and
Liu
,
Z.
,
2019
, “
Effect of Air Flowrate on Pollutant Dispersion Pattern of Coal Dust Particles at Fully Mechanized Mining Face Based on Numerical Simulation
,”
Fuel
,
239
, pp.
623
635
. 10.1016/j.fuel.2018.11.030
25.
Arisoy
,
A.
, and
Beamish
,
B.
,
2015
, “
Reaction Kinetics of Coal Oxidation at Low Temperatures
,”
Fuel
,
159
, pp.
412
417
. 10.1016/j.fuel.2015.06.054
26.
Zhang
,
Y.
,
Liu
,
P.
,
Li
,
G.
,
Huang
,
Z.
,
Gao
,
Y.
, and
Zhao
,
B.
,
2013
, “
Research on Influence of Injecting CO2 at Goaf of 13304 Caving Face of Sunjiagou Coal Mine on Its Three Zones of Spontaneous Combustion
,”
Disaster Adv.
,
6
, pp.
341
349
.
27.
Marsh
,
R.
,
Runyon
,
J.
,
Giles
,
A.
,
Morris
,
S.
,
Pugh
,
D.
,
Valera-Medina
,
A.
, and
Bowen
,
P.
,
2017
, “
Premixed Methane Oxycombustion in Nitrogen and Carbon Dioxide Atmospheres: Measurement of Operating Limits, Flame Location and Emissions
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3949
3958
. 10.1016/j.proci.2016.06.057
28.
Su
,
H.
,
Zhou
,
F.
,
Li
,
J.
, and
Qi
,
H.
,
2017
, “
Effects of Oxygen Supply on Low-Temperature Oxidation of Coal: A Case Study of Jurassic Coal in Yima, China
,”
Fuel
,
202
, pp.
446
454
. 10.1016/j.fuel.2017.04.055
29.
Zellagui
,
S.
,
Schönnenbeck
,
C.
,
Zouaoui
,
N.
,
Brilhac
,
J.
,
Authier
,
O.
,
Thunin
,
E.
, and
Porcheron
,
L.
,
2018
, “
Fast Pyrolysis of Coals Under N2 and CO2 Atmospheres
,”
J. Therm. Anal. Calorim.
,
133
(
3
), pp.
1535
1547
. 10.1007/s10973-018-7218-7
30.
Wen
,
H.
,
Yu
,
Z.
,
Fan
,
S.
,
Zhai
,
X.
, and
Liu
,
W.
,
2017
, “
Prediction of Spontaneous Combustion Potential of Coal in the Gob Area Using CO Extreme Concentration: A Case Study
,”
Combust. Sci. Technol.
,
189
(
10
), pp.
1713
1727
. 10.1080/00102202.2017.1327430
31.
Shi
,
Q.
, and
Qin
,
B.
,
2019
, “
Experimental Research on Gel-Stabilized Foam Designed to Prevent and Control Spontaneous Combustion of Coal
,”
Fuel
,
254
, p.
115558
. https://doi.org/10.1016/j.fuel.2019.05.141
32.
Ranathunga
,
K.
,
Perera
,
M.
,
Ranjith
,
P.
,
Rathnaweera
,
T.
, and
Zhang
,
X.
,
2017
, “
Effect of Coal Rank on CO2 Adsorption Induced Coal Matrix Swelling With Different CO2 Properties and Reservoir Depths
,”
Energy Fuels
,
31
(
5
), pp.
5297
5305
. 10.1021/acs.energyfuels.6b03321
33.
Liu
,
H.
, and
Wang
,
F.
,
2019
, “
Research on N2-Inhibitor-Water Mist Fire Prevention and Extinguishing Technology and Equipment in Coal Mine Goaf
,”
PLoS One
,
14
(
9
), p. e0222003. https://doi.org/10.1371/journal.pone.0222003
34.
Sakurovs
,
R.
,
Day
,
S.
, and
Weir
,
S.
,
2012
, “
Relationships Between the Sorption Behaviour of Methane, Carbon Dioxide, Nitrogen and Ethane on Coals
,”
Fuel
,
97
, pp.
725
729
. 10.1016/j.fuel.2012.03.014
35.
Xu
,
Q.
,
Yang
,
S.
,
Yang
,
W.
,
Tang
,
Z.
,
Hu
,
C.
,
Song
,
W.
, and
Zhou
,
B.
,
2020
, “
Micro-structure of Crushed Coal With Different Metamorphic Degrees and Its Low-Temperature Oxidation
,”
Process Saf. Environ. Prot.
,
140
, pp.
330
338
. 10.1016/j.psep.2020.05.007
You do not currently have access to this content.