Abstract

While hydraulic fracturing is recognized as the most effective stimulation technique for unconventional reservoirs, the production enhancement is influenced by several factors including proppant placement inside the fractures. The goal of this work is to understand the proppant transport and its placement process in T-shaped fracture network through simulations. The proppant transport is studied numerically by coupling a computational fluid dynamic model for the base shear-thinning fluid and the discrete element methods for proppant particles. A scaling analysis has been performed to scale down the model from field scale to lab scale by deriving relevant dimensionless parameters. Different proppant size distributions and injection velocities are considered, as well as the friction and cohesion effects among particle and fracture surface. The simulation results show that in the primary fracture, the injected proppant could divide into three layers: the bottom sand bed zone, the middle rolling surface zone, and the top slurry flow zone. The total number of the proppants do not increase much after the dune reach an equilibrium height. The equilibrium height of sand dune in the minor fracture could be greater than the primary fracture, and the distribution of proppant dunes is symmetric. Two deposit mechanisms have also identified in the bypass fracture network: falling deposition and rolling deposition. Additionally, significant momentum changes due to the change in the flow direction at the intersection with natural fractures is identified as a potential factor in accelerating particle deposition.

References

1.
Britt
,
L. K.
,
Smith
,
M. B.
,
Haddad
,
Z.
,
Lawrence
,
P.
,
Chipperfield
,
S.
, and
Hellman
,
T.
,
2006
, “
Water-Fracs: We Do Need Proppant After all
,”
Proceedings of SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Sept. 24–27
, Vol.
2
, pp.
1370
1384
.
2.
Kern
,
L. R.
,
Perkins
,
T. K.
, and
Wyant
,
R. E.
,
1959
, “
The Mechanics of Sand Movement in Fracturing
,”
J. Pet. Technol.
,
11
(
7
), pp.
55
57
. 10.2118/1108-G
3.
Barree
,
R. D.
, and
Conway
,
M. W.
,
1995
, “
Experimental and Numerical Modeling of Convective Proppant Transport. JPT
,”
J. Pet. Technol.
,
47
(
3
), pp.
216
222
. 10.2118/28564-PA
4.
Brannon
,
H. D.
,
Wood
,
W. D.
, and
Wheeler
,
R. S.
,
2006
, “
Large-Scale Laboratory Investigation of the Effects of Proppant and Fracturing-Fluid Properties on Transport
,”
Proceedings of SPE International Symposium on Formation Damage Control
,
Lafayette, LA
,
Feb. 15–17
, pp.
19
31
.
5.
Wang
,
J.
,
Joseph
,
D. D.
,
Patankar
,
N. A.
,
Conway
,
M.
, and
Barree
,
R. D.
,
2003
, “
Bi-Power Law Correlations for Sediment Transport in Pressure Driven Channel Flows
,”
Int. J. Multiphase Flow
,
29
(
3
), pp.
475
494
. 10.1016/S0301-9322(02)00152-0
6.
Gadde
,
P. B.
,
Liu
,
Y.
,
Norman
,
J.
,
Bonnecaze
,
R.
, and
Sharma
,
M. M.
,
2004
, “
Modeling Proppant Settling in Water-Fracs
,”
Proceedings of SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 26–29
, pp.
373
382
.
7.
Sierra
,
L.
,
Sahai
,
R.
, and
Mayerhofer
,
M.
,
2014
, “
Quantification of Proppant Distribution Effect on Well Productivity and Recovery Factor of Hydraulically Fractured Unconventional Reservoirs
,”
Society of Petroleum Engineers—SPE Canadian Unconventional Resources Conference
,
Calgary, Alberta, Canada
,
Sept. 30–Oct. 2
.
8.
Sahai
,
R.
,
Miskimins
,
J. L.
, and
Olson
,
K. E.
,
2014
, “
Laboratory Results of Proppant Transport in Complex Fracture Systems
,”
Society of Petroleum Engineers—SPE Hydraulic Fracturing Technology Conference 2014
,
The Woodlands, TX
,
Feb. 4–6
, pp.
35
60
.
9.
Tong
,
S.
, and
Mohanty
,
K. K.
,
2016
, “
Proppant Transport Study in Fractures With Intersections
,”
Fuel
,
181
(
1
), pp.
463
477
. 10.1016/j.fuel.2016.04.144
10.
D.E.M. Solutions
,
2018
,
Simulator. EDEM 2018 User Guide–Creator
,
DEM Solutions Ltd.
,
Edinburgh, UK
.
11.
Khan
,
K. M.
, and
Bushell
,
G.
,
2005
, “
Comment on “Rolling Friction in the Dynamic Simulation of Sandpile Formation
,”
Phys. A
,
352
(
2–4
), pp.
522
524
. 10.1016/j.physa.2005.01.019
12.
Sakaguchi
,
H.
,
Ozaki
,
E.
, and
Igarashi
,
T.
,
1993
, “
Plugging of the Flow of Granular Materials During the Discharge From a Silo
,”
Int. J. Mod. Phys. B
,
7
(
09n10
), pp.
1949
1963
. 10.1142/S0217979293002705
13.
Olaleye
,
A. K.
,
Shardt
,
O.
,
Walker
,
G. M.
, and
Van den Akker
,
H. E. A.
,
2019
, “
Pneumatic Conveying of Cohesive Dairy Powder: Experiments and CFD-DEM Simulations
,”
Powder Technol.
,
357
, pp.
193
213
. 10.1016/j.powtec.2019.09.046
14.
Gidaspow
,
D.
,
1994
,
Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
,
Academic Press
,
San Diego, CA
.
15.
Shrivastava
,
K.
, and
Sharma
,
M. M.
,
2018
, “
Proppant Transport in Complex Fracture Networks
,”
Society of Petroleum Engineers—SPE Hydraulic Fracturing Technology Conference and Exhibition 2018, HFTC 2018
,
Woodlands, TX
,
Jan. 23–25
.
16.
Jordan,
2013
, “
Bed Load Proppant Transport During Slickwater Hydraulic Fracturing: Insights From Comparisons Between Published Laboratory Data and Correlations for Sediment and Pipeline Slurry Transport
,”
J. Chem. Inf. Model.
,
53
(
9
), pp.
1689
1699
. 10.1017/CBO9781107415324.004
17.
Patankar
,
N. A.
,
Joseph
,
D. D.
,
Wang
,
J.
,
Barree
,
R.D.
,
Conway
,
M.
, and
Asadi
,
M.
,
2002
, “
Power Law Correlations for Sediment Transport in Pressure Driven Channel Flow
,”
Int. J. Multiphase Flow
,
28
(
3
), pp.
1269
1292
. 10.1016/S0301-9322(02)00030-7
18.
Fernández
,
M. E.
,
Sánchez
,
M.
, and
Pugnaloni
,
L. A.
,
2019
, “
Proppant Transport in a Scaled Vertical Planar Fracture: Vorticity and Dune Placement
,”
J. Pet. Sci. Eng.
,
173
, pp.
1382
1389
. 10.1016/j.petrol.2018.10.007
19.
Dahi Taleghani
,
A.
,
Gonzalez-Chavez
,
M.
,
Yu
,
H.
, and
Asala
,
H.
,
2018
, “
Numerical Simulation of Hydraulic Fracture Propagation in Naturally Fractured Formations Using the Cohesive Zone Model
,”
J. Pet. Sci. Eng.
,
165
, pp.
42
57
. 10.1016/j.petrol.2018.01.063
20.
Puyang
,
P.
,
Taleghani
,
A. D.
,
Sarker
,
B.
, and
Yi
,
H.
,
2018
, “
Optimal Natural Fracture Realizations by Minimizing Least Squared Errors of Distances From Microseismic Events
,”
J. Appl. Geophys.
,
159
, pp.
294
303
. 10.1016/j.jappgeo.2018.09.020
21.
Dahi-Taleghani
,
A.
, and
Ahmadi
,
M.
,
2013
, “Secondary Fractures and Their Potential Impacts on Hydraulic Fractures Efficiency,”
Effective and Sustainable Hydraulic Fracturing
,
R.
Jeffrey
, ed., InTech.
You do not currently have access to this content.