Abstract

This article presents a numerical investigation carried out to determine the effects of second and third injection timing on combustion characteristics and mixture formation of a gasoline direct injection (GDI) engine by comparing conical spray against multihole spray. The results showed that at the engine 80% full load of 2000 r/min, the difference in mixture distribution between the two sprays was obvious with double and triple injection strategies. With the second injection timing from 140 deg CA delay to 170 deg CA, the in-cylinder pressure, the in-cylinder temperature, and the heat release rate of the conical spray increased by 20.8%, 9.8%, and 30.7% and that of the multihole spray decreased by 30.7%, 13.6%, and 37.8%. The delay of the injection time reduced the performance of the engine with the multihole spray, and the performance of the multihole spray was obviously in the simulation of the triple injection strategy. However, for the conical spray, the application of the triple injection strategy increased the temperature and the pressure compared with the double injection strategy.

References

1.
Duronio
,
F.
,
Vita
,
A. D.
,
Montanaro
,
A.
, and
Villante
,
C.
,
2020
, “
Gasoline Direct Injection Engines—A Review of Latest Technologies and Trends. Part 2
,”
Fuel
,
265
, p.
116947
. 10.1016/j.fuel.2019.116947
2.
Schumann
,
F.
,
Sarikoc
,
F.
,
Buri
,
S.
,
Kubach
,
H.
, and
Spicher
,
U.
,
2012
, “
Potential of Spray-Guided Gasoline Direct Injection for Reduction of Fuel Consumption and Simultaneous Compliance With Stricter Emissions Regulations
,”
Int. J. Eng. Res.
,
14
(
1
), pp.
80
91
. 10.1177/1468087412451695
3.
Najjar
,
Y. S. H.
,
2011
, “
Comparison of Performance of a Greener Direct-Injection Stratified-Charge (DISC) Engine With a Spark-Ignition Engine Using a Simplified Model
,”
Energy
,
36
(
7
), pp.
4136
4143
. 10.1016/j.energy.2011.04.031
4.
Saliba
,
G.
,
Saleh
,
R.
,
Zhao
,
Y.
,
Presto
,
A. A.
,
Lambe
,
A. T.
,
Frodin
,
B.
,
Sardar
,
S.
,
Maldonado
,
H.
,
Maddox
,
C.
,
May
,
A. A.
,
Drozd
,
G. T.
,
Goldstein
,
A. H.
,
Russell
,
L. M.
,
Hagen
,
F.
, and
Robinson
,
A. L.
,
2017
, “
Comparison of Gasoline Direct-Injection (GDI) and Port Fuel Injection (PFI) Vehicle Emissions: Emission Certification Standards, Cold-Start, Secondary Organic Aerosol Formation Potential, and Potential Climate Impacts
,”
Environ. Sci. Technol.
,
51
(
11
), pp.
6542
6552
. 10.1021/acs.est.6b06509
5.
Zhao
,
F.
,
Lai
,
M. C.
, and
Harrington
,
D. L.
,
1999
, “
Automotive Spark-Ignited Direct-Injection Gasoline Engines
,”
Prog. Energy Combust. Sci.
,
25
(
5
), pp.
437
562
. 10.1016/S0360-1285(99)00004-0
6.
Singh
,
A. P.
,
Sharma
,
N.
,
Agarwal
,
R.
, and
Agarwal
,
A. K.
,
2020
,
Advanced Combustion Techniques and Engine Technologies for the Automotive Sector
, Vol.
6
,
Springer
,
Singapore
, pp.
111
147
.
7.
Moon
,
S.
,
Li
,
T. X.
,
Sato
,
K.
, and
Yokohata
,
H.
,
2017
, “
Governing Parameters and Dynamics of Turbulent Spray Atomization From Modern GDI Injectors
,”
Energy
,
127
, pp.
89
100
. 10.1016/j.energy.2017.03.099
8.
Wang
,
Z.
,
Ding
,
H.
,
Ma
,
X.
,
Xu
,
H.
, and
Wyszynski
,
M. L.
,
2016
, “
Ultra-High Speed Imaging Study of the Diesel Spray Close to the Injector Tip at the Initial Opening Stage With Single Injection
,”
Appl. Energy
,
165
, pp.
335
344
. 10.1016/j.apenergy.2015.12.046
9.
Migliaccio
,
M.
,
Montanaro
,
A.
,
Beatrice
,
C.
,
Napolitano
,
P.
,
Allocca
,
L.
, and
Fraioli
,
V.
,
2017
, “
Experimental and Numerical Analysis of a High-Pressure Outwardly Opening Hollow Cone Spray Injector for Automotive Engines
,”
Fuel
,
196
, pp.
508
519
. 10.1016/j.fuel.2017.01.020
10.
Jeon
,
J.
, and
Moon
,
S.
,
2018
, “
Ambient Density Effects on Initial Flow Breakup and Droplet Size Distribution of Hollow-Cone Sprays From Outwardly-Opening GDI Injector
,”
Fuel
,
211
, pp.
572
581
. 10.1016/j.fuel.2017.09.016
11.
Lee
,
Z.
,
Kim
,
T.
,
Park
,
S.
, and
Park
,
S.
,
2020
, “
Review on Spray, Combustion, and Emission Characteristics of Recent Developed Direct-Injection Spark Ignition (DISI) Engine System With Multi-Hole Type Injector
,”
Fuel
,
259
, p.
116209
. 10.1016/j.fuel.2019.116209
12.
Choi
,
D. S.
,
Kim
,
D. J.
, and
Hwang
,
S. C.
,
2000
, “
Development Behavior of Vaporizing Sprays From a High-Pressure Swirl Injector Using Exciplex Fluorescence Method
,”
Ksme Int. J.
,
14
(
10
), pp.
1143
1150
. 10.1007/BF03185068
13.
Hu
,
G.
,
1990
, “
New Strategy on Diesel Combustion Development
,”
SAE Paper 900442
.
14.
Long
,
W.
,
Ohtsuka
,
H.
, and
Obokata
,
T.
,
1996
, “
Characterization of Conical Spray Flow for Diesel Engine by Means of Laser Doppler Methods. (PDA Measurement of Droplet Size Distribution)
,”
JSME Int. J., Ser. B
,
39
(
3
), pp.
554
561
. 10.1299/jsmeb.39.554
15.
Long
,
W.
,
Feng
,
L.
,
Xu
,
F.
, and
Du
,
B.
,
2004
, “
The Application of Conical and HL Spray System in the Research of Diesel Homogenous Premixed Combustion
,”
Chin. Intern. Combust. Engine Eng.
,
25
(
1
), pp.
4
8
(in Chinese).
16.
Long
,
W.
,
Tian
,
H.
,
Du
,
B.
,
Feng
,
L.
, and
Xu
,
F.
,
2005
, “
Experimental Research Into Spatial Dispersion Characteristics of the Third-Generation Conical Spray
,”
J. Dalian Univ. Technol.
,
45
(
5
), pp.
658
662
(in Chinese).
17.
Du
,
B.
,
Long
,
W.
,
Feng
,
L.
,
Tian
,
H.
, and
Xu
,
F.
,
2006
, “
Distribution Characteristic of the Third Generation Conical Spray and Study of Application on Multi-Flake Spray System
,”
Chin. Intern. Combust. Engine Eng.
,
27
(
2
), pp.
1
4
(in Chinese).
18.
Leng
,
X.
,
Feng
,
L.
,
Tian
,
J.
,
Du
,
B.
,
Long
,
W.
, and
Tian
,
H.
,
2010
, “
A Study of the Mixture Formation Process for a Third-Generation Conical Spray Applied in HCCI Diesel Combustion
,”
Fuel
,
89
(
2
), pp.
392
398
. 10.1016/j.fuel.2009.08.021
19.
Jia
,
M.
,
Xie
,
M.
,
Liu
,
H.
,
Lam
,
W.-H.
, and
Wang
,
T.
,
2011
, “
Numerical Simulation of Cavitation in the Conical-Spray Nozzle for Diesel Premixed Charge Compression Ignition Engines
,”
Fuel
,
90
(
8
), pp.
2652
2661
. 10.1016/j.fuel.2011.04.017
20.
Dong
,
Q.
,
Ishima
,
T.
,
Kawashima
,
H.
, and
Long
,
W.
,
2013
, “
A Study on the Spray Characteristics of a Piezo Pintle-Type Injector for DI Gasoline Engines
,”
J. Mech. Sci. Technol.
,
27
(
7
), pp.
1981
1993
. 10.1007/s12206-013-0510-3
21.
Clark
,
L. G.
,
Kook
,
S.
,
Chan
,
Q. N.
, and
Hawkes
,
E. R.
,
2017
, “
Influence of Injection Timing for Split-Injection Strategies on Well-Mixed High-Load Combustion Performance in an Optically Accessible Spark-Ignition Direct-Injection (SIDI) Engine
,”
SAE Technical Paper Series
,
1
. 10.4271/2017-01-0657
22.
Ketterer
,
J. E.
, and
Cheng
,
W. K.
,
2014
, “
On the Nature of Particulate Emissions From DISI Engines at Cold-Fast-Idle
,”
SAE Int. J. Eng.
,
7
(
2
), pp.
986
994
. 10.4271/2014-01-1368
23.
Schock
,
H. J.
,
Mittal
,
M. L.
,
Gupta
,
S. K.
, and
Bisht
,
A.
,
2019
, “
Analysis of Spray Variations and Macroscopic Spray Characteristics in a Gasoline Direct-Injection Engine at Different Injection Timings
,”
J. Visualization
,
22
(
4
), pp.
761
771
. 10.1007/s12650-019-00559-4
24.
Kim
,
T.
,
Song
,
J.
, and
Park
,
S.
,
2015
, “
Effects of Turbulence Enhancement on Combustion Process Using a Double Injection Strategy in Direct-Injection Spark-Ignition (DISI) Gasoline Engines
,”
Int. J. Heat Fluid Flow
,
56
, pp.
124
136
. 10.1016/j.ijheatfluidflow.2015.07.013
25.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2019
, “
Effect of Fuel Injection Pressure and Engine Speed on Performance, Emissions, Combustion, and Particulate Investigations of Gasohols Fuelled Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042201
. 10.1115/1.4044763
26.
El-Adawy
,
M.
,
Heikal
,
M. R.
,
Aziz
,
A.
, and
R
,
A.
,
2019
, “
Stereoscopic Particle Image Velocimetry Measurements and Proper Orthogonal Decomposition Analysis of the In-Cylinder Flow of Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042204
. 10.1115/1.4042068
27.
Pratap
,
S.
,
Nikhil
,
A.
,
and Kumar
,
B.
, and
A
,
A.
,
2018
, “
Combustion Mode Switching Characteristics of a Medium-Duty Engine Operated in Compression Ignition/PCCI Combustion Modes
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092201
. 10.1115/1.4039741
28.
Costa
,
M.
,
Sorge
,
U.
, and
Allocca
,
L.
,
2012
, “
Increasing Energy Efficiency of a Gasoline Direct Injection Engine Through Optimal Synchronization of Single or Double Injection Strategies
,”
Energy Convers. Manage.
,
60
, pp.
77
86
. 10.1016/j.enconman.2011.12.025
29.
Duan
,
X.
,
Liu
,
J.
,
Tan
,
Y.
,
Luo
,
B.
,
Guo
,
G.
,
Wu
,
Z.
,
Liu
,
W.
, and
Li
,
Y.
,
2018
, “
Influence of Single Injection and Two-Stagnation Injection Strategy on Thermodynamic Process and Performance of a Turbocharged Direct-Injection Spark-Ignition Engine Fuelled With Ethanol and Gasoline Blend
,”
Appl. Energy
,
228
, pp.
942
953
. 10.1016/j.apenergy.2018.06.090
30.
Zhou
,
L.
,
Shao
,
A.
,
Hua
,
J.
,
Wei
,
H.
, and
Feng
,
D.
,
2018
, “
Effect of Retarded Injection Timing on Knock Resistance and Cycle to Cycle Variation in Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
070002
. 10.1115/1.4039322
31.
Martinez
,
S.
,
Merola
,
S.
, and
Irimescu
,
A.
,
2019
, “
Flame Front and Burned Gas Characteristics for Different Split Injection Ratios and Phasing in an Optical GDI Engine
,”
Appl. Sci.
,
9
(
3
). 10.3390/app9030449
32.
Gong
,
Z.
,
Feng
,
L.
, and
Wang
,
Z.
,
2019
, “
Experimental and Numerical Study of the Effect of Injection Strategy and Intake Valve Lift on Super-Knock and Engine Performance in a Boosted GDI Engine
,”
Fuel
,
249
, pp.
309
325
. 10.1016/j.fuel.2019.03.005
33.
Yue
,
Z.
,
Edwards
,
K. D.
,
Sluders
,
C. S.
, and
Som
,
S.
,
2019
, “
Prediction of Cyclic Variability and Knock-Limited Spark Advance in a Spark-Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102201
. 10.1115/1.4043393
34.
Bermudez
,
V.
,
Lujan
,
J. M.
,
Climent
,
H.
,
Soto
,
L.
, and
Campos
,
D.
,
2018
, “
Analysis of Regulated Pollutant Emissions and Aftertreatment Efficiency in a GTDi Engine Using Different SOI Strategies
,”
SAE Int. J. Eng.
,
11
(
3
), pp.
363
382
. 10.4271/03-11-03-0025
35.
Duronio
,
F.
,
Vita
,
A. D.
,
Allocca
,
L.
, and
Anatone
,
M.
,
2020
, “
Gasoline Direct Injection Engines—A Review of Latest Technologies and Trends. Part 1: Spray Breakup Process
,”
Fuel
,
265
, p.
116948
. 10.1016/j.fuel.2019.116948
36.
Turner
,
M. R.
,
Sazhin
,
S. S.
,
Healey
,
J. J.
,
Crua
,
C.
, and
Martynov
,
S. B.
,
2012
, “
A Breakup Model for Transient Diesel Fuel Sprays
,”
Fuel
,
97
, pp.
288
305
. 10.1016/j.fuel.2012.01.076
37.
Lee
,
S. Y.
,
Lee
,
H. J.
,
Kang
,
Y. T.
, and
Chung
,
J. T.
,
2018
, “
Effects of Injection Strategies on the Flow and Fuel Behavior Characteristics in Port Dual Injection Engine
,”
Energy
,
165
(
PT.A
), pp.
666
676
. 10.1016/j.energy.2018.09.026
38.
Costanzo
,
V. S.
, and
Heywood
,
J. B.
,
2012
, “
Effect of In-Cylinder Liquid Fuel Films on Engine-Out Unburned Hydrocarbon Emissions for an SI Engine
,”
SAE Technical Paper Series
. 10.4271/2012-01-1712
You do not currently have access to this content.