Abstract

In this paper, a new methodology is proposed to realize real-time unsteady flow estimation for a multi-product pipeline system. Integrating transient flow model, adaptive control theory, and adaptive filter, this method is developed to solve the contradiction between the efficiency and accuracy in traditional model-based methods. In terms of improving computational efficiency, the linear flow model based on frequency response and difference transforming is established to replace the traditional nonlinear flow model for transient flow state estimation. To reduce the deviation between actual observations and linear model estimates, we first introduce a model-free adaptive control method as linear compensation of the reduced order unsteady flow state model. To overcome the interference of observation noise, the Kalman filter method is applied to the modified state space model to obtain the one-step-ahead transient flow estimation. The proposed method is applied to the transient flow state estimation of a multi-product pipeline system and compared with the model-based method and two data-driven methods. The proposed method can reduce the deviation of transient flow estimation between the reduced order linear model and the traditional nonlinear model to less than 0.5% under unforeseen conditions and shows strong robustness to noise interference and parameter drift.

References

1.
Herran
,
A.
,
Cruz
,
J. M. D. L.
, and
de Andres
,
B.
,
2010
, “
A Mathematical Model for Planning Transportation of Multiple Petroleum Products in a Multi-Pipeline System
,”
Comput. Chem. Eng.
,
34
(
3
), pp.
401
413
.
2.
PADOT
,
2020
, “
PHMSA—Distribution, Transmission & Gathering, LNG, and Liquid Accident and Incident Data
,”
U.S. Department of Transportation
,
Washington, DC
, May, https://www.phmsa.dot.gov/data-and-statistics/pipeline/distribution-transmission-gathering-lng-and-liquid-accident-and-incident-data
3.
Ghidaoui
,
M. S.
,
Zhao
,
M.
,
Mcinnis
,
D. A.
, and
Axworthy
,
D. H.
,
2005
, “
A Review of Water Hammer Theory and Practice
,”
ASME Appl. Mech. Rev.
,
58
(
1
), pp.
49
76
.
4.
Greyvenstein
,
G. P.
,
2002
, “
An Implicit Method for the Analysis of Transient Flows in Pipe Networks
,”
Int. J. Numer. Methods Eng.
,
53
(
5
), pp.
1127
1143
.
5.
Rohani
,
M.
, and
Afshar
,
M. H.
,
2010
, “
Simulation of Transient Flow Caused by Pump Failure: Point-Implicit Method of Characteristics
,”
Ann. Nucl. Energy
,
37
(
12
), pp.
1742
1750
.
6.
Seifollahi-Aghmiuni
,
S.
,
Haddad
,
O. B.
,
Omid
,
M. H.
, and
Marino
,
M. A.
,
2013
, “
Effects of Pipe Roughness Uncertainty on Water Distribution Network Performance During Its Operational Period
,”
Ann. Nucl. Energy
,
27
(
5
), pp.
1581
1599
.
7.
Kang
,
D.
, and
Lansey
,
K.
,
2015
, “
Demand and Roughness Estimation in Water Distribution Systems
,”
Ann. Nucl. Energy
,
137
(
1
), pp.
20
30
.
8.
Babayan
,
A. V.
,
Savic
,
D. A.
, and
Walters
,
G. A.
,
2007
,
Chapter 8—Multi-Objective Optimization of Water Distribution System Design Under Uncertain Demand and Pipe Roughness
,
Elsevier
,
Exeter
.
9.
Oezger
,
M.
, and
Yildirim
,
G.
,
2009
, “
Determining Turbulent Flow Friction Coefficient Using Adaptive Neuro-Fuzzy Computing Technique
,”
Adv. Eng. Soft.
,
40
(
4
), pp.
281
287
.
10.
Shayya
,
W. H.
, and
Sablani
,
S. S.
,
1998
, “
An Artificial Neural Network for Non-Iterative Calculation of the Friction Factor in Pipeline Flow
,”
Comput. Electron. Agric.
,
21
(
3
), pp.
219
228
.
11.
Duan
,
H. F.
, and
Lee
,
P. J.
,
2015
, “
Transient-Based Frequency Domain Method for Dead-End Side Branch Detection in Reservoir Pipeline-Valve Systems
,”
Int. J. Prod. Res.
,
142
(
2
), p.
04015042
.
12.
Hur
,
J.
,
Kim
,
S.
, and
Kim
,
H.
,
2017
, “
Water Hammer Analysis that Uses the Impulse Response Method for a Reservoir-Pump Pipeline System
,”
J. Mech. Sci. Technol.
,
31
(
10
), pp.
4833
4840
.
13.
Lay-Ekuakille
,
A.
,
Vergallo
,
P.
, and
Trotta
,
A.
,
2010
, “
Impedance Method for Leak Detection in Zigzag Pipelines
,”
Meas. Sci. Rev.
,
10
(
6
), pp.
209
213
.
14.
Kim
,
S.
,
2014
, “
Inverse Transient Analysis for a Branched Pipeline System With Leakage and Blockage Using Impedance Method
,”
Procedia Eng.
,
89
(
11
), pp.
1350
1357
.
15.
Hou
,
Z.
, and
Jin
,
S.
,
2011
, “
Data-Driven Model-Free Adaptive Control for a Class of Mimo Nonlinear Discrete-Time Systems
,”
IEEE Trans. Neural Netw.
,
22
(
12
), p.
2173
.
16.
Ziang
,
L.
,
Zhengtao
,
D.
,
Meihong
,
W.
, and
Eni
,
O.
,
2018
, “
Model-Free Adaptive Control for Mea-Based Post-Combustion Carbon Capture Processes
,”
Fuel
,
224
(
7
), pp.
637
643
.
17.
Xu
,
D.
,
Jiang
,
B.
, and
Shi
,
P.
,
2014
, “
A Novel Model-Free Adaptive Control Design for Multivariable Industrial Processes
,”
IEEE Trans. Ind. Electron.
,
61
(
11
), pp.
6391
6398
.
18.
Ozawa
,
A.
,
Gao
,
B.
, and
Sanada
,
K.
,
2010
, “
Estimation of Fluid Transients in a Pipe Using Kalman Filter Based on Optimized Finite Element Model
,”
Proceedings of SICE Annual Conference 2010
,
Taipei, Taiwan
,
Aug. 18–21
, pp.
1652
1657
.
19.
Wylie
,
E.
, and
Streeter
,
V.
,
1978
,
Fluid Transient
,
McGraw-Hill International Book Co.
,
New York
.
20.
Ahonen
,
T.
,
Tamminen
,
J.
,
Ahola
,
J.
,
Viholainen
,
J.
,
Aranto
,
N.
, and
Kestilae
,
J.
,
2010
, “
Estimation of Pump Operational State With Model-Based Methods
,”
Energy Convers. Manage.
,
51
(
6
), pp.
1319
1325
.
21.
Tian
,
W.
,
Su
,
G. H.
,
Wang
,
G.
,
Qiu
,
S.
, and
Xiao
,
Z.
,
2008
, “
Numerical Simulation and Optimization on Valve-Induced Water Hammer Characteristics for Parallel Pump Feedwater System
,”
Ann. Nucl. Energy
,
35
(
12
), pp.
2280
2287
.
22.
Yuanming
,
Z.
, and
Zhongsheng
,
H.
,
2012
, “
Controller Compact Form Dynamic Linearization Based Model Free Adaptive Control
,”
2012 IEEE 51st Conference on Decision and Control (CDC)
,
Maui, HI
,
Dec. 10–13
, pp.
4817
4822
.
23.
Jin
,
S.
,
Hou
,
Z.
, and
Chi
,
R.
,
2011
, “
A Novel Higher-Order Model-Free Adaptive Control for a Class of Discrete-Time Siso Nonlinear Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
7
), p.
044503
.
24.
Petschel
,
B. S.
,
Soltani Naveh
,
K.
, and
Mcaree
,
P. R.
,
2017
, “
Convergence Properties of the Kalman Inverse Filter
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
6
), p.
061001
.
25.
Wei
,
T.
,
Yu
,
F.
,
Huang
,
G.
, and
Xu
,
C.
,
2019
, “
A Particle-Swarm-Optimization-Based Parameter Extraction Routine for Three-Diode Lumped Parameter Model of Organic Solar Cells
,”
IEEE Electron. Dev. Lett.
,
40
(
9
), pp.
1511
1514
.
26.
Wang
,
D.
,
Chu
,
Y.
, and
Feng
,
D.
,
2010
, “
Auxiliary Model-Based RELS and MI-ELS Algorithm for Hammerstein OEMA Systems
,”
Comput. Math. Appl.
,
59
(
9
), pp.
3092
3098
.
27.
Wunsch
,
A.
,
Liesch
,
T.
, and
Broda
,
S.
,
2018
, “
Forecasting Groundwater Levels Using Nonlinear Autoregressive Networks with Exogenous Input (NARX)
,”
J. Hydrology
,
567
(
9
), pp.
743
758
.
You do not currently have access to this content.