Abstract

The present work explores a novel flow-independent liquid injection scheme, incorporating solid obstructions to alter the key mechanisms controlling the liquid breakup and trajectory. These obstructions, designated pintiles, minimize the variability of fuel injection dynamics over a range of operational conditions. To better understand these mechanisms, a variety of solid pintile obstructions are designed and incorporated into a liquid jet in crossflow experiment. The design parameters of interest include the fraction of the liquid jet orifice blocked by the pintile (orifice coverage), the vertical height of the pintile in the liquid stream, and the angle of the obstruction with respect to the injection plate. All pintiles are tested at non-reacting ambient temperature and pressure conditions over a range of engine relevant Reynolds numbers (Re = 171,500–343,000), momentum flux ratios (Q = 4–45), and Weber numbers (We = 20–80) to understand the leading order effects the solid–liquid–gas interaction has on the liquid breakup and trajectory control. The results demonstrate that the most consistent jet trajectories are achieved with pintiles with a high orifice coverage, a large height, and an angle of 45 deg. Other parameters, such as the transverse spread of the liquid jet and droplet size distributions, are quantified to ensure that consistent jet trajectories can be achieved without imparting adverse effects on other relevant combustion characteristics. The results provide a foundational, first-order understanding on how to minimize variability of liquid injection across engine relevant Reynolds numbers, Weber numbers, and momentum flux ratios.

References

1.
Lee
,
J.
,
Lin
,
K. C.
, and
Eklund
,
D.
,
2015
, “
Challenges in Fuel Injection for High-Speed Propulsion Systems
,”
AIAA J.
,
53
(
6
), pp.
1405
1423
.
2.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion
,
CRC Press
,
Boca Raton, FL
.
3.
Li
,
Z.
,
Yuan
,
Y.
,
Varsegov
,
V. L.
,
Guo
,
B.
,
Xiao
,
B.
, and
Duan
,
P. H.
,
2021
, “
Study on the Mixing Characteristics of Circular Transverse Jet in Crossflow
,”
Aerosp. Sci. Technol.
,
112
, p.
106599
.
4.
Sharma
,
P.
,
Jain
,
N.
, and
Arghode
,
V. K.
,
2019
, “
Investigation of a Low Emission Liquid Fueled Reverse-Cross-Flow Combustor
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p. 102202.
5.
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2011
, “
Investigation of Reverse Flow Distributed Combustion for Gas Turbine Application
,”
Appl. Energy.
,
88
(
4
), pp.
1096
1104
.
6.
Seiner
,
J. M.
,
Dash
,
S. M.
, and
Kenzakowski
,
D. C.
,
2001
, “
Historical Survey on Enhanced Mixing in Scramjet Engines
,”
J. Propuls. Power.
,
17
(
6
), pp.
1273
1286
.
7.
Bogdanoff
,
D. W.
,
1994
, “
Advanced Injection and Mixing Techniques for Scramjet Combustors
,”
J. Propuls. Power.
,
10
(
2
), pp.
183
190
.
8.
Ferrell
,
G. B.
,
Lilley
,
D. G.
,
California
,
M.
, and
Ferrelll
,
G.
,
1985
, “
Turbulence Measurements of Lateral Jet Injection Into Confined Tubular Cross Flow
,”
AIAA/SAE/ASME/ASEE 21st Joint Propulsion Conference
,
Monterey, CA
,
July 8–10
.
9.
Ferrell
,
G. B.
,
Abujelala
,
T.
,
Busnaina
,
A.
, and
Lilley
,
D. G.
,
1984
,”
AIAA/SAE/ASME 20th Joint Propulsion Conference
,
Cincinnati, OH
,
June 11–13
.
10.
Ingebo
,
R. D.
,
1967
,
Penetration of Drops Into High Velocity Airstreams
,
National Aeronautics and Space Administration
,
Cleveland, OH
.
11.
Wotel
,
G. J.
,
Gallagher
,
K. E.
,
Caron
,
S. D.
,
Reosfjord
,
T. J.
,
Hautman
,
D. J.
, and
Spadaccini
,
L. J.
,
1991
, Highspeed Turboramjet Combustor Technology Program, Wright Lab., TR-91-2043, Wright–Patterson AFB, OH.
12.
Schetz
,
J. A.
, and
Padhye
,
A.
,
1977
, “
Penetration and Breakup of Liquids in Subsonic Airstreams
,”
AIAA J.
,
15
(
10
), pp.
1385
1390
.
13.
Geery
,
E. L.
, and
Margetts
,
M. J.
,
1969
, “
Penetration of a High-Velocity Gas Stream by a Water Jet
,”
J. Spacecr. Rockets
,
6
(
1
), pp.
79
81
.
14.
Chen
,
T.
,
Smith
,
C.
,
Schommer
,
D.
, and
Nejad
,
A.
,
1993
, “
Multi-zone Behavior of Transverse Liquid Jet in High-Speed Flow
,”
Proceedings of the 31st Aerospace Sciences Meeting
, p.
451
.
15.
Ragucci
,
R.
,
Bellofiore
,
A.
, and
Cavaliere
,
A.
,
2007
, “
Trajectory and Momentum Coherence Breakdown of a Liquid Jet in High-Density Air Cross-flow
,”
At. Sprays
,
17
(
1
), pp.
47
70
.
16.
Stenzler
,
J. N.
,
Lee
,
J. G.
,
Santavicca
,
D. A.
, and
Lee
,
W.
,
2006
, “
Penetration of Liquid Jets in a Cross-Flow
,”
At. Sprays
,
16
(
8
), pp.
887
906
.
17.
Iyogun
,
C. O.
,
Birouk
,
M.
, and
Popplewell
,
N.
,
2006
, “
Trajectory of Water Jet Exposed to Low Subsonic Cross-Flow
,”
At. Sprays
,
16
(
8
), pp.
963
979
.
18.
Mashayek
,
A.
,
Jafari
,
A.
, and
Ashgriz
,
N.
,
2008
, “
Improved Model for the Penetration of Liquid Jets in Subsonic Crossflows
,”
AIAA J.
,
46
(
11
), pp.
2674
2686
.
19.
Zheng
,
Y.
, and
Marshall
,
A. W.
,
2011
, “
Characterization of the Initial Spray From Low-Weber-Number Jets in Crossflow
,”
At. Sprays.
,
21
(
7
), pp.
575
589
.
20.
Chelko
,
L. J.
,
1950
, Penetration of Liquid Jets into a High-Velocity Air Stream (No. NACA-RM-E50F21).
21.
Yates
,
C. L.
,
1972
,
Liquid Injection Into a Supersonic Stream
,
Air Force Aero Propulsion Lab Wright-Patterson AFB
,
Dayton, OH
.
22.
No
,
S. Y.
,
2015
, “
A Review on Empirical Correlations for Jet/Spray Trajectory of Liquid Jet in Uniform Cross Flow
,”
Int. J. Spray Combust. Dyn.
,
7
(
4
), pp.
283
314
.
23.
Rachner
,
M.
,
Becker
,
J.
,
Hassa
,
C.
, and
Doerr
,
T.
,
2002
, “
Modelling of the Atomization of a Plain Liquid Fuel Jet in Crossflow at Gas Turbine Conditions
,”
Aerosp. Sci. Technol.
,
6
(
7
), pp.
495
506
.
24.
Liu
,
N.
,
Wang
,
Z.
,
Sun
,
M.
,
Deiterding
,
R.
, and
Wang
,
H.
,
2019
, “
Simulation of Liquid Jet Primary Breakup in a Supersonic Crossflow Under Adaptive Mesh Refinement Framework
,”
Aerosp. Sci. Technol.
,
91
, pp.
456
473
.
25.
Li
,
C.
,
Li
,
P.
,
Li
,
C.
,
Li
,
Q.
, and
Zhou
,
Y.
,
2020
, “
Experimental and Numerical Investigation of Cross-sectional Structures of Liquid Jets in Supersonic Crossflow
,”
Aerosp. Sci. Technol.
,
103
, p.
105926
.
26.
Li
,
P.
,
Wang
,
Z.
,
Bai
,
X. S.
,
Wang
,
H.
,
Sun
,
M.
,
Wu
,
L.
, and
Liu
,
C.
,
2019
, “
Three-Dimensional Flow Structures and Droplet-Gas Mixing Process of a Liquid Jet in Supersonic Crossflow
,”
Aerosp. Sci. Technol.
,
90
, pp.
140
156
.
27.
Wu
,
P. K.
,
Kirkendall
,
K. A.
,
Fulle
,
R. P.
, and
Nejad
,
A. S.
,
1997
, “
Breakup Processes of Liquid Jets in Subsonic Crossflows
,”
J. Propuls. Power.
,
13
, pp.
64
73
.
28.
Broumand
,
M.
, and
Birouk
,
M.
,
2016
, “
Liquid Jet in a Subsonic Gaseous Crossflow: Recent Progress and Remaining Challenges
,”
Prog. Energy Combust. Sci.
,
57
, pp.
1
29
.
29.
Salauddin
,
S.
,
Flores
,
W.
,
Otero
,
M.
, and
Ahmed
,
K.
,
2020
, “
Modal Analysis of Liquid Fuel Jet in Crossflow
,”
AIAA Propulsion and Energy 2020 Forum
, Virtual,
Aug. 24–28
, pp.
1
10
.
30.
Nejad
,
A. S.
, and
Schetzt
,
J. A.
,
1984
, “
Effects of Viscosity and Surface Tension on a Jet Plume in Supersonic Crossflow
,”
AIAA J.
,
22
(
4
), pp.
458
459
.
31.
Turns
,
S. R.
,
2000
,
An Introduction to Combustion: Concepts and Applications
,
McGraw-Hill
,
New York
.
32.
Hasselbrink
,
E. F.
, and
Mungal
,
M. G.
,
2001
, “
Transverse Jets and Jet Flames. Part 2. Velocity and OH Field Imaging
,”
J. Fluid Mech.
,
443
, pp.
27
68
.
33.
Gollahalli
,
S. R.
, and
Pardiwalla
,
D.
,
2017
, “
Comparison of the Flame Characteristics of Turbulent Crossflow
,”
ASME J. Energy Resour. Technol.
,
124
(
3
), pp.
197
203
.
34.
Pires
,
J. M.
, and
Fernandes
,
E. C.
,
2018
, “
Combined Effect of Equivalence Ratio and Velocity Gradients on Flame Stability and Emission Formation
,”
Fuel.
,
222
, pp.
800
809
.
35.
Stiehl
,
B.
,
Genova
,
T.
,
Otero
,
M.
,
Martin
,
S.
, and
Ahmed
,
K.
,
2021
, “
Fuel Stratification Influence on NO x Emission in a Premixed Axial Reacting Jet-in-Crossflow at High Pressure
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p. 122303.
36.
Li
,
Y.
,
Cheriet
,
M.
, and
Suen
,
C. Y.
,
2005
, “
A Threshold Selection Method Based on Multiscale and Graylevel Co-Occurrence Matrix Analysis
,”
Eighth International Conference on Document Analysis and Recognition (ICDAR'05)
, Vol.
2
,
Seoul, South Korea
,
Aug. 31–Sept. 5
, pp.
575
579
.
37.
Wille
,
R.
, and
Fernholz
,
H.
,
1965
, “
Report on the First European Mechanics Colloquium, on the Coanda Effect
,”
J. Fluid Mech.
,
23
(
4
), pp.
801
819
.
38.
Park
,
C. W.
, and
Lee
,
S. J.
,
2000
, “
Free End Effects on the Near Wake Flow Structure Behind a Finite Circular Cylinder
,”
J. Wind Eng. Ind. Aerodyn.
,
88
(
2–3
), pp.
231
246
.
39.
Bursnall
,
W. J.
, and
Loftin
,
L. K.
,
1951
,
Experimental Investigation of the Pressure Distribution About a Yawed Circular Cylinder in the Critical Reynolds Number Range
,
National Aeronautics and Space Administration
,
Washington, DC
.
40.
Thakur
,
A.
,
Liu
,
X.
, and
Marshall
,
J. S.
,
2004
, “
Wake Flow of Single and Multiple Yawed Cylinders
,”
ASME J. Fluids Eng.
,
126
(
5
), pp.
861
870
.
41.
Hayashi
,
T.
, and
Kawamura
,
T.
,
1995
, “
Non-Uniformity in a Flow Around a Yawed Circular Cylinder
,”
Flow Meas. Instrum.
,
6
(
1
), pp.
33
39
.
42.
Williamson
,
C. H. K.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech. V.
,
28
(
1
), pp.
477
539
.
43.
Park
,
C. W.
, and
Lee
,
S. J.
,
2004
, “
Effects of Free-End Corner Shape on Flow Structure Around a Finite Cylinder
,”
J. Fluids Struct.
,
19
(
2
), pp.
141
158
.
You do not currently have access to this content.