Abstract

It is common sense the wettability alteration in carbonate reservoirs stems from the oil–rock interactions; however, the exact oil component acting as the dominant role remains unclear. This study adopts molecular dynamics technology, takes {101¯4} calcite crystal surface as the mineral surface of carbonate reservoir, uses multiple single-component oils to characterize real crude oil, and conducts research on the wettability alteration of carbonate reservoirs. First, based on the chromatographic analysis results of a certain carbonate reservoir in the Middle East, the simulated oil is divided into polar and nonpolar components. Then, the Materials Studio software and the COMPASS force field were employed to study the natural wettability of the calcite surface, as well as the adsorption characteristic of different oil components and water on the surface of calcite. Results show that the surface of calcite in carbonate reservoirs is indeed water-wet under initial conditions, and the contact angle of calcite surface is equal to 68.47 deg ± 3.6 deg. However, when the crude oil component contains groups of hydroxyl functional group, especially the strongly polar component with multiple hydroxyl functional groups, such as glycerol (GLYC), will cause the originally water-wet calcite surface becomes oil-wet. The main reason for the GLYC component altering the wettability of the calcite surface is hydrogen bonding and Coulomb interaction. Moreover, the results of centroid displacement of nine oil components shown that besides the GLYC component, the rest of the eight components, including the polar component of nitrogen-containing functional groups (Indole), sulfur-containing functional groups (Benzothiophene), as well as five nonpolar components, all migrate away from the calcite surface.

References

1.
Qi
,
Z.
,
2014
, “
Interfacial Property Changes Induced by Displacement Agents and Their EOR Mechanisms
,” Ph.D. thesis, China University of Petroleum, East China.
2.
Zhang
,
Q.
,
Liu
,
H.
,
Kang
,
X.
,
Liu
,
Y.
,
Dong
,
X.
,
Wang
,
Y.
,
Liu
,
S.
, and
Li
,
G.
,
2021
, “
An Investigation of Production Performance by Cyclic Steam Stimulation Using Horizontal Well in Heavy Oil Reservoirs
,”
Energy
,
218
, p.
119500
.
3.
Donaldson
,
E.
,
Thomas
,
R.
, and
Lorenz
,
P.
,
1969
, “
Wettability Determination and Its Effect on Recovery Efficiency
,”
SPE J.
,
9
(
1
), pp.
13
20
.
4.
Leverett
,
M. C.
,
1941
, “
Capillary Behavior in Porous Solids
,”
Trans. AIME
,
142
(
1
), pp.
152
169
.
5.
Chilingar
,
G.
, and
Yen
,
T.
,
1983
, “
Some Notes on Wettability and Relative Permeabilities of Carbonate Reservoir Rocks, II
,”
Energy Sources
,
7
(
1
), pp.
67
75
.
6.
Treiber
,
L.
, and
Owens
,
W.
,
1972
, “
A Laboratory Evaluation of the Wettability of Fifty Oil-Producing Reservoirs
,”
SPE J.
,
12
(
6
), pp.
531
540
.
7.
Cao
,
L.
,
Sun
,
J.
,
Xu
,
T.
,
Cao
,
L.
, and
Lin
,
G.
,
2014
, “
Experimental Study of Wettability Evaluation on Carbonate Reservoir Rock
,”
Pet. Geol. Recovery Effic.
,
21
(
4
), pp.
89
92
.
8.
Fatt
,
I.
, and
Klikoff
,
W.
,
1959
, “
Effect of Fractional Wettability on Multiphase Flow Through Porous Media
,”
J. Pet. Technol.
,
11
(
10
), pp.
71
76
.
9.
Holbrook
,
O.
, and
Bernard
,
G.
,
1958
, “
Determination of Wettability by Dye Adsorption
,”
Trans. AIME
,
213
(
1
), pp.
261
264
.
10.
Salathiel
,
R.
,
1973
, “
Oil Recovery by Surface Film Drainage in Mixed-Wettability Rocks
,”
J. Pet. Technol.
,
25
(
10
), pp.
1216
1224
.
11.
Buckley
,
J.
,
Hirasaki
,
G.
,
Liu
,
Y.
,
Von Drasek
,
S.
,
Wang
,
J.
, and
Gill
,
B.S.
,
1998
, “
Asphaltene Precipitation and Solvent Properties of Crude Oils
,”
Pet. Sci. Technol.
,
16
(
3–4
), pp.
251
285
.
12.
Denekas
,
M.
,
Mattax
,
C.
, and
Davis
,
G.
,
1959
, “
Effects of Crude Oil Components on Rock Wettability
,”
Trans. AIME
,
216
(
1
), pp.
330
333
.
13.
Buckley
,
J.
,
1998
, “
Wetting Alteration of Solid Surfaces by Crude Oils and Their Asphaltenes
,”
Oil Gas Sci. Technol.
,
53
(
3
), pp.
303
312
.
14.
Li
,
S.
,
Zhang
,
A.
, and
Wang
,
T.
,
1998
, “
Polar Fractions’ Adsorption of Crude Oil and Wettability of Reservoir and Their Research Significance
,”
Geol. Sci. Technol. Inf.
,
17
(
4
), pp.
65
70
.
15.
Wu
,
S.
,
Qian
,
J.
, and
Zhao
,
F.
,
2004
, “
Effect of Adsorption and Deposition of Asphaltines in Crude Oil on Wettability and Permeability of Reservoir Rocks
,”
J. Univ. Pet., China
,
28
(
1
), pp.
36
40
.
16.
Wang
,
Y.
,
Wang
,
S.
,
Xu
,
H.
,
Yu
,
W.
,
Qi
,
Z.
, and
Lv
,
H.
,
2011
, “
Interaction Between Asphaletene and Quantz Surface and Mechanisms of Wettability Alteration
,”
Pet. Geol. Recovery Effic.
,
18
(
4
), pp.
72
74
.
17.
Hall
,
A.
,
Collins
,
S.
, and
Melrose
,
J.
,
1982
, “
Stability of Aqueous Wetting Films in Athabasca Tar Sands
,”
SPE J.
,
23
(
2
), pp.
249
258
.
18.
Melrose
,
J.
,
1982
, “
Interpretation of Mixed Wettability States in Reservoir Rocks
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
.
19.
Blake
,
T.
, and
Kitchener
,
J.
,
1972
, “
Stability of Aqueous Films on Hydrophobic Methylated Silica
,”
J. Chem. Soc., Faraday Trans.
,
68
, pp.
1435
1442
.
20.
Takamura
,
K.
, and
Chow
,
R.
,
1983
, “
A Mechanism For Initiation of Bitumen Displacement From Oil Sand
,”
J. Can. Pet. Technol.
,
22
(
6
), pp.
21
30
.
21.
Yan
,
J.
,
Plancher
,
H.
, and
Morrow
,
N.
,
1997
, “
Wettability Changes Induced by Adsorption of Asphaltenes
,”
SPE Prod. Facil.
,
12
(
4
), pp.
259
266
.
22.
Somasundaran
,
P.
, and
Agar
,
G.
,
1967
, “
The Zero Point of Charge of Calcite
,”
J. Colloid Interface Sci.
,
24
(
4
), pp.
433
440
.
23.
Christenson
,
H.
, and
Pashloy
,
R.
,
1987
, “
Properties of Capillary Fluids at the Microscopic Level
,”
SPE Reservoir Eng.
,
2
(
2
), pp.
155
165
.
24.
Anderson
,
W.
,
1986
, “
Wettability Literature Survey- Part 1: Rock/Oil/Brine Interactions and the Effects of Core Handling on Wettability
,”
J. Pet. Technol.
,
38
(
10
), pp.
1125
1144
.
25.
Ahmadi
,
M.
,
Hou
,
Q.
,
Wang
,
Y.
, and
Chen
,
Z.
,
2020
, “
Interfacial and Molecular Interactions Between Fractions of Heavy Oil and Surfactants in Porous Media: Comprehensive Review
,”
Adv. Colloid Interface Sci.
,
283
, p.
102242
.
26.
Ling
,
H.
,
Hu
,
Y. Y.
,
Zhu
,
Y. K.
,
Zhang
,
H. J.
,
Shao
,
Z. C.
,
Dai
,
L. S.
,
Huang
,
Z. B.
, and
Yuan
,
P. Q.
,
2021
, “
Visbreaking of Heavy Oil in a Mixed Solvent of Subcritical Water and Light Aromatics
,”
Ind. Eng. Chem. Res.
,
60
(
25
), pp.
9059
9067
.
27.
Ahmadi
,
M.
, and
Chen
,
Z.
,
2020
, “
Molecular Interactions Between Asphaltene and Surfactants in a Hydrocarbon Solvent: Application to Asphaltene Dispersion
,”
Symmetry
,
12
(
11
), p.
1767
.
28.
Ahmadi
,
M.
, and
Chen
,
Z.
,
2020
, “
Insight Into the Interfacial Behavior of Surfactants and Asphaltenes: Molecular Dynamics Simulation Study
,”
Energy Fuels
,
34
(
11
), pp.
13536
13551
.
29.
Yang
,
Y.
,
Sui
,
H.
,
Ma
,
J.
,
He
,
L.
, and
Li
,
X.
,
2021
, “
Revealing the Residual Mechanism of Switchable Solvents in Heavy Oil
,”
Fuel Process. Technol.
,
218
, p.
106857
.
30.
Ahmadi
,
M.
, and
Chen
,
Z.
,
2021
, “
Spotlight Onto Surfactant–Steam–Bitumen Interfacial Behavior via Molecular Dynamics Simulation
,”
Sci. Rep.
,
11
(
1
), pp.
1
33
.
31.
Ahmadi
,
M.
, and
Chen
,
Z.
,
2021
, “
Comprehensive Molecular Scale Modeling of Anionic Surfactant-Asphaltene Interactions
,”
Fuel
,
288
, p.
119729
.
32.
Huang
,
L.
,
Zhou
,
W.
,
Xu
,
H.
,
Wang
,
L.
,
Zou
,
J.
, and
Zhou
,
Q.
,
2021
, “
Dynamic Fluid States in Organic-Inorganic Nanocomposite: Implications for Shale Gas Recovery and CO2 Sequestration
,”
Chem. Eng. J.
,
411
, p.
128423
.
33.
Huang
,
L.
,
Ning
,
Z.
,
Lin
,
H.
,
Zhou
,
W.
,
Wang
,
L.
,
Zou
,
J.
, and
Xu
,
H.
,
2021
, “
High-Pressure Sorption of Methane, Ethane, and Their Mixtures on Shales From Sichuan Basin, China
,”
Energy Fuels
,
35
(
5
), pp.
3989
3999
.
34.
Sun
,
Z.
,
Wang
,
S.
,
Xiong
,
H.
,
Wu
,
K.
, and
Shi
,
J.
,
2021
, “
Optimal Nanocone Geometry for Water Flow
,”
AIChE J.
,
07
(
3
), p.
17543
.
35.
Sun
,
Z.
,
Huang
,
B.
,
Li
,
Y.
,
Lin
,
H.
,
Shi
,
S.
, and
Yu
,
W.
,
2021
, “
Nanoconfined Methane Flow Behavior Through Realistic Organic Shale Matrix Under Displacement Pressure: A Molecular Simulation Investigation
,”
J. Pet. Explor. Prod. Technol.
,
22
, pp.
1
9
.
36.
Sun
,
Z.
,
Huang
,
B.
,
Wu
,
K.
,
Shi
,
S.
,
Wu
,
Z.
,
Hou
,
M.
, and
Wang
,
H.
,
2022
, “
Nanoconfined Methane Density Over Pressure and Temperature: Wettability Effect
,”
J. Nat. Gas Sci. Eng.
,
99
, p.
104426
.
37.
Materials Studio
,
2012
.
A Material Modeling Software of Accelrys Company, USA
, www.accelrys.com.
38.
Sun
,
H.
,
1998
, “
COMPASS: An ab Initio Force-Field Optimized for Condensed Phase Applications Overview With Details on Alkane and Benzene Compounds
,”
J. Phys. Chem. B
,
102
(
38
), pp.
7338
7364
.
39.
Huang
,
L.
,
Ning
,
Z.
,
Wang
,
Q.
,
Zhang
,
W.
,
Cheng
,
Z.
,
Wu
,
X.
, and
Qin
,
H.
,
2018
, “
Effect of Organic Type and Moisture on CO2/CH4 Competitive Adsorption in Kerogen With Implications for CO2 Sequestration and Enhanced CH4 Recovery
,”
Appl. Energy
,
210
, pp.
28
43
.
40.
Sui
,
H.
, and
Yao
,
J.
,
2016
, “
Effect of Surface Chemistry for CH4/CO2 Adsorption in Kerogen: A Molecular Simulation Study
,”
J. Nat. Gas Sci. Eng.
,
31
, pp.
738
746
.
41.
Ru
,
X.
,
Cheng
,
Z.
,
Song
,
L.
,
Wang
,
H.
, and
Li
,
J.
,
2012
, “
Experimental and Computational Studies on the Average Molecular Structure of Chinese Huadian Oil Shale Kerogen
,”
J. Mol. Struct.
,
1030
, pp.
10
18
.
42.
Kunieda
,
M.
,
Nakaoka
,
K.
,
Liang
,
Y.
,
Miranda
,
C. R.
,
Ueda
,
A.
,
Takahashi
,
S.
,
Okabe
,
H.
, and
Matsuoka
,
T.
,
2010
, “
Self-accumulation of Aromatics at the Oil−Water Interface Through Weak Hydrogen Bonding
,”
J. Am. Chem. Soc.
,
132
(
51
), pp.
18281
18286
.
43.
Mirchi
,
V.
,
Saraji
,
S.
,
Goual
,
L.
, and
Piri
,
M.
,
2015
, “
Dynamic Interfacial Tension and Wettability of Shale in the Presence of Surfactants at Reservoir Conditions
,”
Fuel
,
148
, pp.
127
138
.
44.
Sedghi
,
M.
,
Piri
,
M.
, and
Goual
,
L.
,
2016
, “
Atomistic Molecular Dynamics Simulations of Crude Oil/Brine Displacement in Calcite Mesopores
,”
Langmuir
,
32
(
14
), pp.
3375
3384
.
45.
Zhao
,
T.
,
Li
,
X.
,
Zhao
,
H.
, and
Li
,
M.
,
2017
, “
Molecular Simulation of Adsorption and Thermodynamic Properties on Type II Kerogen: Influence of Maturity and Moisture Content
,”
Fuel
,
190
, pp.
198
207
.
46.
Zhao
,
J.
,
Yao
,
G.
,
Ramisetti
,
S. B.
,
Hammond
,
R.B.
, and
Wen
,
D.
,
2018
, “
Molecular Dynamics Simulation of the Salinity Effect on the n-Decane/Water/Vapor Interfacial Equilibrium
,”
Energy Fuels
,
32
(
11
), pp.
11080
11092
.
47.
Sun
,
Z.
,
Li
,
X.
,
Liu
,
W.
,
Zhang
,
T.
,
He
,
M.
, and
Nasrabadi
,
H.
,
2020
, “
Molecular Dynamics of Methane Flow Behavior Through Realistic Organic Nanopores Under Geologic Shale Condition: Pore Size and Kerogen Types
,”
Chem. Eng. J.
,
398
, p.
124341
.
48.
Hautman
,
J.
, and
Klein
,
M.
,
1991
, “
Microscopic Wetting Phenomena
,”
Phys. Rev. Lett.
,
67
(
13
), pp.
1763
1766
.
49.
Ren
,
H.
,
Meng
,
Q.
,
Fan
,
Z.
,
Liu
,
Y.
,
Zeng
,
Q.
, and
Hu
,
S
,
2014
, “
Molecular Simulation of Wetting Behavior on Hydroxylation and Silanization SiO2 Surface
,”
J. China Univ. Pet.
,
38
(
5
), pp.
172
177
.
You do not currently have access to this content.