Abstract

The combustion of 2,4,4-trimethyl-1-pentene (diisobutylene, C8H16), which is a biofuel and a component of surrogate fuels, is examined in this work. Carbon monoxide time–histories and ignition delay times are collected behind reflected shock waves utilizing a shock tube and mid-infrared laser absorption spectroscopy. Measurements were obtained near 10 atm pressure during stoichiometric oxidation of 0.15%C8H16/O2/Ar. Simulated results from chemical kinetic models are provided, and sensitivity analyses are used to discuss differences between models for both ignition delay times and carbon monoxide formation. In addition, laminar burning speeds are obtained at 1 atm, 428 K, and equivalence ratios, phi, between 0.91 and 1.52 inside a spherical chamber facility. Measured burning speeds are found to be less than that of ethanol over the equivalence ratio span. Burning speed measurements are compared to predictions of chemical kinetic mechanisms and are in agreement for the richest conditions; however, at lean conditions, the model predicts a far slower-burning speed. The maximum burning speed occurs at an equivalence ratio of 1.08 with a magnitude of 0.70 m/s. The current work provides the crucial experimental data needed for assessing the feasibility of this biofuel and for the development of future combustion chemical kinetics models.

References

1.
Li
,
H.
,
Qiu
,
Y.
,
Wu
,
Z.
,
Wang
,
S.
,
Lu
,
X.
, and
Huang
,
Z.
,
2019
, “
Ignition Delay of Diisobutylene-Containing Multicomponent Gasoline Surrogates: Shock Tube Measurements and Modeling Study
,”
Fuel
,
235
, pp.
1387
1399
.
2.
Barari
,
G.
,
Sarathy
,
S. M.
, and
Vasu
,
S. S.
,
2016
, “
Improved Combustion Kinetic Model and HCCI Engine Simulations of Di-Isopropyl Ketone Ignition
,”
Fuel
,
164
, pp.
141
150
.
3.
Rahman
,
R. K.
,
Barak
,
S.
,
(Raghu) Manikantachari
,
K. R. V.
,
Ninnemann
,
E.
,
Hosangadi
,
A.
,
Zambon
,
A.
, and
Vasu
,
S. S.
,
2020
, “
Probing the Effects of NOx and SOx Impurities on Oxy-Fuel Combustion in Supercritical CO2: Shock Tube Experiments and Chemical Kinetic Modeling
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122302
.
4.
Laich
,
A. R.
,
Baker
,
J.
,
Ninnemann
,
E.
,
Sigler
,
C.
,
Naumann
,
C.
,
Braun-Unkhoff
,
M.
, and
Vasu
,
S. S.
,
2020
, “
Effects of High Fuel Loading and CO2 Dilution on Oxy-Methane Ignition Inside a Shock Tube at High Pressure
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102103
.
5.
Vesely
,
L.
,
Manikantachari
,
K. R. V.
,
Vasu
,
S.
,
Kapat
,
J.
,
Dostal
,
V.
, and
Martin
,
S.
,
2018
, “
Effect of Impurities on Compressor and Cooler in Supercritical CO2 Cycles
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012003
.
6.
Manikantachari
,
K. R. V.
,
Vesely
,
L.
,
Martin
,
S.
,
Bobren-Diaz
,
J. O.
, and
Vasu
,
S.
,
2018
, “
Reduced Chemical Kinetic Mechanisms for Oxy/Methane Supercritical CO2 Combustor Simulations
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092202
.
7.
Khadse
,
A.
,
Blanchette
,
L.
,
Kapat
,
J.
,
Vasu
,
S.
,
Hossain
,
J.
, and
Donazzolo
,
A.
,
2018
, “
Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071601
.
8.
Pryor
,
O.
,
Barak
,
S.
,
Lopez
,
J.
,
Ninnemann
,
E.
,
Koroglu
,
B.
,
Nash
,
L.
, and
Vasu
,
S.
,
2017
, “
High Pressure Shock Tube Ignition Delay Time Measurements During Oxy-Methane Combustion With High Levels of CO2 Dilution
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042208
.
9.
Zhang
,
K.
,
Lokachari
,
N.
,
Ninnemann
,
E.
,
Khanniche
,
S.
,
Green
,
W. H.
,
Curran
,
H. J.
,
Vasu
,
S. S.
, and
Pitz
,
W. J.
,
2018
, “
An Experimental, Theoretical, and Modeling Study of the Ignition Behavior of Cyclopentanone
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
657
665
.
10.
Bai
,
Z.
,
Wang
,
Z.
,
Yu
,
G.
,
Yang
,
Y.
, and
Metghalchi
,
H.
,
2018
, “
Experimental Study of Laminar Burning Speed for Premixed Biomass/Air Flame
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022206
.
11.
Szybist
,
J. P.
,
Busch
,
S.
,
McCormick
,
R. L.
,
Pihl
,
J. A.
,
Splitter
,
D. A.
,
Ratcliff
,
M. A.
,
Kolodziej
,
C. P.
,
Storey
,
J. M.E.
,
Moses-DeBusk
,
M.
,
Vuilleumier
,
D.
,
Sjöberg
,
M.
,
Sluder
,
C. S.
,
Rockstroh
,
T.
, and
Miles
,
P.
,
2021
, “
What Fuel Properties Enable Higher Thermal Efficiency in Spark-Ignited Engines?
Prog. Energy Combust. Sci.
,
82
, p.
100876
.
12.
McCormick
,
R. L.
,
Fioroni
,
G.
,
Fouts
,
L.
,
Christensen
,
E.
,
Yanowitz
,
J.
,
Polikarpov
,
E.
,
Albrecht
,
K.
,
Gaspar
,
D. J.
,
Gladden
,
J.
, and
George
,
A.
,
2017
, “
Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines
,”
SAE Int. J. Fuels Lubr.
,
10
(
2
), pp.
442
460
.
13.
Wang
,
Z.
,
Bai
,
Z.
,
Yu
,
G.
,
Yelishala
,
S.
, and
Metghalchi
,
H.
,
2019
, “
The Critical Pressure at the Onset of Flame Instability of Syngas/Air/Diluent Outwardly Expanding Flame at Different Initial Temperatures and Pressures
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082207
.
14.
Askari
,
O.
,
Elia
,
M.
,
Ferrari
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Auto-Ignition Characteristics Study of Gas-to-Liquid Fuel at High Pressures and Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012204
.
15.
Rahman
,
R. K.
,
Barak
,
S.
,
Wagnon
,
S. W.
,
Kukkadapu
,
G.
,
Pitz
,
W. J.
, and
Vasu
,
S. S.
,
2022
, “
Shock Tube Investigation of High-Temperature, Extremely-Rich Oxidation of Several Co-Optima Biofuels for Spark-Ignition Engines
,”
Combust. Flame
,
236
, p.
111794
.
16.
Johnson
,
M. S.
,
Nimlos
,
M. R.
,
Ninnemann
,
E.
,
Laich
,
A.
,
Fioroni
,
G. M.
,
Kang
,
D.
,
Bu
,
L.
,
Ranasinghe
,
D.
,
Khanniche
,
S.
,
Goldsborough
,
S. S.
,
Vasu
,
S. S.
, and
Green
,
W. H.
,
2021
, “
Oxidation and Pyrolysis of Methyl Propyl Ether
,”
Int. J. Chem. Kinet.
,
53
(
8
), pp.
915
938
.
17.
Barak
,
S.
,
Rahman
,
R. K.
,
Neupane
,
S.
,
Ninnemann
,
E.
,
Arafin
,
F.
,
Laich
,
A.
,
Terracciano
,
A. C.
, and
Vasu
,
S. S.
,
2020
, “
Measuring the Effectiveness of High-Performance Co-Optima Biofuels on Suppressing Soot Formation at High Temperature
,”
Proc. Natl. Acad. Sci. USA
,
117
(
7
), pp.
3451
3460
.
18.
Kim
,
G.
,
Almansour
,
B.
,
Park
,
S.
,
Terracciano
,
A. C.
,
Zhang
,
K.
,
Wagnon
,
S.
,
Pitz
,
W. J.
, and
Vasu
,
S. S.
,
2019
, “
Laminar Burning Velocities of High-Performance Fuels Relevant to the Co-Optima Initiative
,”
SAE Int. J. Adv. Curr. Prac. Mobil.
,
1
, pp.
1139
1147
.
19.
Fikri
,
M.
,
Herzler
,
J.
,
Starke
,
R.
,
Schulz
,
C.
,
Roth
,
P.
, and
Kalghatgi
,
G.
,
2008
, “
Autoignition of Gasoline Surrogates Mixtures at Intermediate Temperatures and High Pressures
,”
Combust. Flame
,
152
(
1–2
), pp.
276
281
.
20.
Zhong
,
B.-J.
, and
Zheng
,
D.
,
2014
, “
A Chemical Mechanism for Ignition and Oxidation of Multi-Component Gasoline Surrogate Fuels
,”
Fuel
,
128
, pp.
458
466
.
21.
Vasu
,
S. S.
,
Huynh
,
L. K.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
, and
Golden
,
D. M.
,
2011
, “
Reactions of OH with Butene Isomers: Measurements of the Overall Rates and a Theoretical Study
,”
J. Phys. Chem. A
,
115
(
12
), pp.
2549
2556
.
22.
Vasu
,
S. S.
,
Hong
,
Z.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
, and
Golden
,
D. M.
,
2010
, “
Shock Tube/Laser Absorption Measurements of the Reaction Rates of OH With Ethylene and Propene
,”
J. Phys. Chem. A
,
114
(
43
), pp.
11529
11537
.
23.
Kohse-Höinghaus
,
K.
,
2018
, “
Clean Combustion: Chemistry and Diagnostics for a Systems Approach in Transportation and Energy Conversion
,”
Prog. Energy Combust. Sci.
,
65
(
1.10
), pp.
1
5
.
24.
Egolfopoulos
,
F. N.
,
Hansen
,
N.
,
Ju
,
Y.
,
Kohse-Höinghaus
,
K.
,
Law
,
C. K.
, and
Qi
,
F.
,
2014
, “
Advances and Challenges in Laminar Flame Experiments and Implications for Combustion Chemistry
,”
Prog. Energy Combust. Sci.
,
43
(
1
), pp.
36
67
.
25.
Battin-Leclerc
,
F.
,
2008
, “
Detailed Chemical Kinetic Models for the Low-Temperature Combustion of Hydrocarbons With Application to Gasoline and Diesel Fuel Surrogates
,”
Prog. Energy Combust. Sci.
,
34
(
4
), pp.
440
498
.
26.
Song
,
H.
,
Dauphin
,
R.
, and
Vanhove
,
G.
,
2020
, “
A Kinetic Investigation on the Synergistic Low-Temperature Reactivity, Antagonistic RON Blending of High-Octane Fuels: Diisobutylene and Cyclopentane
,”
Combust. Flame
,
220
, pp.
23
33
.
27.
Yin
,
G.
,
Gao
,
Z.
,
Hu
,
E.
,
Xu
,
Z.
, and
Huang
,
Z.
,
2019
, “
Comprehensive Experimental and Kinetic Study of 2,4,4-Trimethyl-1-Pentene Oxidation
,”
Combust. Flame
,
208
, pp.
246
261
.
28.
Zhang
,
X.
,
Cao
,
C.
,
Zou
,
J.
,
Li
,
Y.
,
Zhang
,
Y.
,
Guo
,
J.
,
Xu
,
Q.
,
Feng
,
B.
,
Sarathy
,
S. M.
,
Yang
,
J.
,
Wang
,
Z.
,
Qi
,
F.
, and
Li
,
Y.
,
2021
, “
Low-Temperature Oxidation Chemistry of 2,4,4-Trimethyl-1-Pentene (Diisobutylene) Triggered by Dimethyl Ether (DME): A Jet-Stirred Reactor Oxidation and Kinetic Modeling Investigation
,”
Combust. Flame
,
234
, p.
111629
.
29.
Metcalfe
,
W. K.
,
Pitz
,
W. J.
,
Curran
,
H. J.
,
Simmie
,
J. M.
, and
Westbrook
,
C. K.
,
2007
, “
The Development of a Detailed Chemical Kinetic Mechanism for Diisobutylene and Comparison to Shock Tube Ignition Times
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
377
384
.
30.
Mittal
,
G.
, and
Sung
,
C.-J.
,
2008
, “
Homogeneous Charge Compression Ignition of Binary Fuel Blends
,”
Combust. Flame
,
155
(
3
), pp.
431
439
.
31.
Hu
,
E.
,
Yin
,
G.
,
Gao
,
Z.
,
Liu
,
Y.
,
Ku
,
J.
, and
Huang
,
Z.
,
2017
, “
Experimental and Kinetic Modeling Study on 2, 4, 4-Trimethyl-1-Pentene Ignition Behind Reflected Shock Waves
,”
Fuel
,
195
, pp.
97
104
.
32.
Zheng
,
D.
,
Zhong
,
B.-J.
, and
Xiong
,
P.-F.
,
2018
, “
Experimental Study on Laminar Flame Speeds and Chemical Kinetic Model of 2,4,4-Trimethyl-1-Pentene
,”
Fuel
,
229
, pp.
95
104
.
33.
Andrae
,
J. C.
,
2008
, “
Development of a Detailed Kinetic Model for Gasoline Surrogate Fuels
,”
Fuel
,
87
(
10–11
), pp.
2013
2022
.
34.
Cancino
,
L.
,
Fikri
,
M.
,
Oliveira
,
A.
, and
Schulz
,
C.
,
2011
, “
Ignition Delay Times of Ethanol-Containing Multi-Component Gasoline Surrogates: Shock-Tube Experiments and Detailed Modeling
,”
Fuel
,
90
(
3
), pp.
1238
1244
.
35.
Koroglu
,
B.
, and
Vasu
,
S. S.
,
2016
, “
Measurements of Propanal Ignition Delay Times and Species Time Histories Using Shock Tube and Laser Absorption
,”
Int. J. Chem. Kinet.
,
48
(
11
), pp.
679
690
.
36.
Barari
,
G.
,
Pryor
,
O.
,
Koroglu
,
B.
,
Lopez
,
J.
,
Nash
,
L.
,
Sarathy
,
S. M.
,
Masunov
,
A. E.
, and
Vasu
,
S. S.
,
2017
, “
High Temperature Shock Tube Experiments and Kinetic Modeling Study of Diisopropyl Ketone Ignition and Pyrolysis
,”
Combust. Flame
,
177
, pp.
207
218
.
37.
Barak
,
S.
,
Pryor
,
O.
,
Lopez
,
J.
,
Ninnemann
,
E.
,
Vasu
,
S.
, and
Koroglu
,
B.
,
2017
, “
High-Speed Imaging and Measurements of Ignition Delay Times in Oxy-Syngas Mixtures With High CO2 Dilution in a Shock Tube
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
121503
.
38.
Shao
,
J.
,
Choudhary
,
R.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
,
Barak
,
S.
, and
Vasu
,
S.
,
2018
, “
Ignition Delay Times of Methane and Hydrogen Highly Diluted in Carbon Dioxide at High Pressures Up to 300 atm
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4555
4562
.
39.
Ninnemann
,
E.
,
Kim
,
G.
,
Laich
,
A.
,
Almansour
,
B.
,
Terracciano
,
A. C.
,
Park
,
S.
,
Thurmond
,
K.
,
Neupane
,
S.
,
Wagono
,
S.
,
Pitz
,
W. J.
, and
Vasu
,
S. S.
,
2019
, “
Co-Optima Fuels Combustion: A Comprehensive Experimental Investigation of Prenol Isomers
,”
Fuel
,
254
, p.
115630
.
40.
Vasu
,
S.
,
Kim
,
G.
,
Almansour
,
B.
,
Pitz
,
W.
,
Zhang
,
K.
,
Park
,
S.
,
Terracciano
,
A.
, and
Wagnon
,
S.
,
2019
, “
Laminar Burning Velocities of High-Performance Fuels Relevant to the Co-Optima Initiative
,”
SAE Int. J. Adv. Curr. Prac. Mobil.
,
1
, pp.
1139
1147
.
41.
Almansour
,
B.
,
Alawadhi
,
S.
, and
Vasu
,
S.
,
2017
, “
Laminar Burning Velocity Measurements in DIPK—An Advanced Biofuel
,”
SAE Int. J. Fuels Lubr.
,
10
(
2
), pp.
432
441
.
42.
2,4,4-Trimethyl-1-pentene, CID = 7868
,” National Center for Biotechnology Information, PubChem Database.
43.
ANSYS
,
2019
, “ANSYS Chemkin-Pro.,”
San Diego, CA
, https://www.ansys.com/products/fluids/ansys-chemkin-pro, Accessed February 9, 2022.
44.
Almansour
,
B.
,
Kim
,
G.
, and
Vasu
,
S.
,
2018
, “
The Effect of Diluent Gases on High Pressure Laminar Burning Velocity Measurements of an Advanced Biofuel Ketone
,”
SAE Int. J. Adv. Curr. Prac. Mobil.
,
11
(
4
), pp.
1139
1147
.
45.
Almansour
,
B.
,
Thompson
,
L.
,
Lopez
,
J.
,
Barari
,
G.
, and
Vasu
,
S. S.
,
2016
, “
Laser Ignition and Flame Speed Measurements in Oxy-Methane Mixtures Diluted With CO2
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032201
.
46.
Saeed
,
K.
, and
Stone
,
C. R.
,
2004
, “
Measurements of the Laminar Burning Velocity for Mixtures of Methanol and Air From a Constant-Volume Vessel Using a Multizone Model
,”
Combust. Flame
,
139
(
1–2
), pp.
152
166
.
47.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moffat
,
H. K.
, and
Weber
,
B. W.
,
2018
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Version 2.4.0
,” https://www.cantera.org, Accessed February 9, 2022.
48.
O'Donovan
,
K.
, and
Rallis
,
C. J.
,
1959
, “
A Modified Analysis for the Determination of the Burning Velocity of a Gas Mixture in a Spherical Constant Volume Combustion Vessel
,”
Combust. Flame
,
3
, pp.
201
214
.
49.
Bradley
,
D.
, and
Morley
,
C.
,
1997
, “Chapter 7 Autoignition in Spark-Ignition Engines,”
Comprehensive Chemical Kinetics
,
MJ
Pilling
, ed.,
Elsevier
,
New York
, pp.
661
760
.
50.
Hill
,
P.
, and
Hung
,
J.
,
1988
, “
Laminar Burning Velocities of Stoichiometric Mixtures of Methane With Propane and Ethane Additives
,”
Combust. Sci. Technol.
,
60
(
1–3
), pp.
7
30
.
51.
Takizawa
,
K.
,
Takahashi
,
A.
,
Tokuhashi
,
K.
,
Kondo
,
S.
, and
Sekiya
,
A.
,
2005
, “
Burning Velocity Measurement of Fluorinated Compounds by the Spherical-Vessel Method
,”
Combust. Flame
,
141
(
3
), pp.
298
307
.
52.
Chen
,
Z.
,
Burke
,
M. P.
, and
Ju
,
Y.
,
2009
, “
Effects of Compression and Stretch on the Determination of Laminar Flame Speeds Using Propagating Spherical Flames
,”
Combust. Theory Modell.
,
13
(
2
), pp.
343
364
.
53.
Xiouris
,
C.
,
Ye
,
T.
,
Jayachandran
,
J.
, and
Egolfopoulos
,
F. N.
,
2016
, “
Laminar Flame Speeds Under Engine-Relevant Conditions: Uncertainty Quantification and Minimization in Spherically Expanding Flame Experiments
,”
Combust. Flame
,
163
, pp.
270
283
.
54.
Salicone
,
S.
, and
Prioli
,
M.
,
2018
,
Measuring Uncertainty Within the Theory of Evidence
,
Springer
,
New York
.
55.
Law
,
C. K.
,
2006
,
Combustion Physics
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.