Abstract

This study investigated the effects of cooperative-control of the start of injection (SOI), excess air ratio (λ), internal exhaust gas recirculation (I-EGR), and intake air temperature (IAT) on the combustion and emission characteristics of gasoline compression ignition (GCI) engines, especially regards to the combustion stability and knock characteristics. And optimizing the GCI engine combustion and emissions through the cooperative control of multiple parameters is the innovation of this research. The results showed that advancing the SOI and increasing the I-EGR ratio can significantly expand the low-load limit, but the heating effect of 20% I-EGR only worked when the SOI was earlier. An appropriate increase of λ could increase the maximum brake thermal efficiency (BTE) to 40.06%, but resulted in high-knock probability and high NOx emissions. Rising the IAT was more effective than advancing the SOI in improving combustion fluctuations, but the knock probability and knock intensity were more sensitive to the early SOI. When the SOI varied from 26 °CA BTDC to 30 °CA BTDC, λ was 1–1.5, the I-EGR ratio was 5%–20%, and the IAT was 40–50 °C; the GCI engine can obtain the balance among high thermal efficiency, high combustion stability, low knock probability, and low emissions.

References

1.
Dec
,
J. E.
,
2009
, “
Advanced Compression-Ignition Engines—Understanding the In-Cylinder Processes
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2727
2742
.
2.
Wang
,
H.
,
Ji
,
C.
,
Shi
,
C.
,
Ge
,
Y.
,
Wang
,
S.
, and
Yang
,
J.
,
2021
, “
Development of Cyclic Variation Prediction Model of the Gasoline and n-Butanol Rotary Engines With Hydrogen Enrichment
,”
Fuel
,
299
, p.
120891
.
3.
Zhang
,
Y.
,
Zhan
,
L.
,
He
,
Z.
,
Jia
,
M.
,
Leng
,
X.
,
Zhong
,
W.
,
Qian
,
Y.
, and
Lu
,
X.
,
2019
, “
An Investigation on Gasoline Compression Ignition (GCI) Combustion in a Heavy-Duty Diesel Engine Using Gasoline/Hydrogenated Catalytic Biodiesel Blends
,”
Appl. Therm. Eng.
,
160
, p.
113952
.
4.
Jianguo
,
D.
,
Balaji
,
M.
,
Jaeheon
,
S.
,
Tiegang
,
F.
,
Junseok
,
C.
, and
William
,
L. R.
,
2020
, “
A Comprehensive Study of Spray and Combustion Characteristics of a Prototype Injector for Gasoline Compression Ignition (GCI) Application
,”
Fuel
,
277
, p.
118144
.
5.
Kalghatgi
,
G. T.
,
Per
,
R.
, and
Ångström
,
H.-E.
,
2006
, “
Advantages of Fuels With High Resistance to Auto-ignition in Late-Injection, low-Temperature, Compression Ignition Combustion
,”
SAE Transactions
,
Toronto, Canada
,
Oct. 16–19
, pp.
623
634
.
6.
Manente
,
V.
,
Bengt
,
J.
, and
Tunestal
,
P.
,
2009
, “
Partially Premixed Combustion at High Load Using Gasoline and Ethanol, a Comparison With Diesel
,”
SAE Technical Paper Series
, Paper No. 2009-01-0944.
7.
Manente
,
V.
,
Johansson
,
B.
,
Tunestal
,
P.
, and
Cannella
,
W.
,
2010
, “
Influence of Inlet Pressure, EGR, Combustion Phasing, Speed and Pilot Ratio on High Load Gasoline Partially Premixed Combustion
,”
SAE Technical Paper Series
, Paper No. 2010-01-1471.
8.
Hanson
,
R.
,
Splitter
,
D.
, and
Reitz
,
R. D.
,
2009
, “
Operating a Heavy-Duty Direct-Injection Compression-Ignition Engine With Gasoline for Low Emissions
,”
SAE Technical Paper Series
, Paper No. 2009-01-1442.
9.
Ra
,
Y.
,
Yun
,
J. E.
, and
Reitz
,
R. D.
,
2009
, “
Numerical Parametric Study of Diesel Engine Operation With Gasoline
,”
Combust. Sci. Technol.
,
181
(
2
), pp.
350
378
.
10.
Sellnau
,
M.
,
Foster
,
M.
,
Hoyer
,
K.
,
Moore
,
W.
,
Sinnamon
,
J.
, and
Husted
,
H.
,
2014
, “
Development of a Gasoline Direct Injection Compression Ignition (GDCI) Engine
,”
SAE Int. J. Engines
,
7
(
2
), pp.
835
851
.
11.
Borgqvist
,
P.
,
Tunestal
,
P.
, and
Johansson
,
B.
,
2012
, “
Gasoline Partially Premixed Combustion in a Light Duty Engine at Low Load and Idle Operating Conditions
,”
SAE Technical Paper Series
, Paper No. 2012-01-0687.
12.
Kalghatgi
,
G. T.
,
Gurubaran
,
R. K.
,
Davenport
,
A.
,
Harrison
,
A. J.
,
Hardalupas
,
Y.
, and
Taylor
,
A. M. K. P.
,
2013
, “
Some Advantages and Challenges of Running a Euro IV, V6 Diesel Engine on a Gasoline Fuel
,”
Fuel
,
108
, pp.
197
207
.
13.
Chun-hua
,
Z.
,
Jiang-ru
,
P.
,
Juan-juan
,
T.
, and
Jing
,
L. I.
,
2011
, “
Effects of Intake Temperature and Excessive Air Coefficient on Combustion Characteristics and Emissions of HCCI Combustion
,”
Proc. Environ. Sci.
,
11
, pp.
1119
1127
.
14.
Putrasari
,
Y.
, and
Ocktaeck
,
L. I. M.
,
2018
, “
A Study of a GCI Engine Fueled With Gasoline-Biodiesel Blends Under Pilot and Main Injection Strategies
,”
Fuel
,
221
, pp.
269
282
.
15.
Borgqvist
,
P.
,
Tunestal
,
P.
, and
Johansson
,
B.
,
2013
, “
Comparison of Negative Valve Overlap (NVO) and Rebreathing Valve Strategies on a Gasoline PPC Engine at Low Load and Idle Operating Conditions
,”
SAE Int. J. Engines
,
6
(
1
), pp.
366
378
.
16.
Jiang
,
C.
,
Li
,
Z.
,
Liu
,
G.
,
Qian
,
Y.
, and
Lu
,
X.
,
2019
, “
Achieving High Efficient Gasoline Compression Ignition (GCI) Combustion Through the Cooperative-Control of Fuel Octane Number and Air Intake Conditions
,”
Fuel
,
242
, pp.
23
34
.
17.
Pedrozo
,
V. B.
,
May
,
I.
,
Lanzanova
,
T. D. M.
, and
Zhao
,
H.
,
2016
, “
Potential of Internal EGR and Throttled Operation for Low Load Extension of Ethanol–Diesel Dual-Fuel Reactivity Controlled Compression Ignition Combustion on a Heavy-Duty Engine
,”
Fuel
,
179
, pp.
391
405
.
18.
Kolodziej
,
C.
,
Kodavasal
,
J.
,
Ciatti
,
S.
,
Som
,
S.
,
Shidore
,
N.
, and
Delhom
,
J.
,
2015
, “
Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle
,”
SAE Technical Paper
, Paper No. 2015-01-0832.
19.
Kolodziej
,
C. P.
,
Ciatti
,
S.
,
Vuilleumier
,
D.
,
Adhikary
,
B. D.
, and
Reitz
,
R. D.
,
2014
, “
Extension of the Lower Load Limit of Gasoline Compression Ignition With 87 AKI Gasoline by Injection Timing and Pressure
,”
SAE Technical Paper
, Paper No. 2014-01-1302.
20.
Zhao
,
J.
,
Ma
,
F.
,
Xiong
,
X.
,
Deng
,
J.
,
Wang
,
L.
,
Naeve
,
N.
, and
Zhao
,
S.
,
2013
, “
Effects of Compression Ratio on the Combustion and Emission of a Hydrogen Enriched Natural Gas Engine Under Different Excess Air Ratio
,”
Energy
,
59
, pp.
658
665
.
21.
Shu
,
J.
,
Fu
,
J.
,
Liu
,
J.
,
Wang
,
S.
,
Yin
,
Y.
,
Deng
,
B.
, and
Becker
,
S. M.
,
2019
, “
Influences of Excess air Coefficient on Combustion and Emission Performance of Diesel Pilot Ignition Natural gas Engine by Coupling Computational Fluid Dynamics With Reduced Chemical Kinetic Model
,”
Energy Convers. Manage.
,
187
, pp.
283
296
.
22.
Ortiz-Soto
,
E. A.
,
Vavra
,
J.
, and
Babajimopoulos
,
A.
,
2012
, “
Assessment of Residual Mass Estimation Methods for Cylinder Pressure Heat Release Analysis of HCCI Engines With Negative Valve Overlap
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
082802
.
23.
Chen
,
G.
,
Shen
,
Y.
,
Zhang
,
Q.
,
Yao
,
M.
,
Zheng
,
Z.
, and
Liu
,
H.
,
2013
, “
Experimental Study on Combustion and Emission Characteristics of a Diesel Engine Fueled With 2,5-Dimethylfuran–Diesel, n-Butanol–Diesel and Gasoline–Diesel Blends
,”
Energy
,
54
, pp.
333
342
.
24.
Rangasamy
,
M.
,
Duraisamy
,
G.
, and
Govindan
,
N.
,
2020
, “
A Comprehensive Parametric, Energy and Exergy Analysis for Oxygenated Biofuels Based Dual-Fuel Combustion in an Automotive Light Duty Diesel Engine
,”
Fuel
,
277
, p.
118167
.
25.
Kulandaivel
,
D.
,
Rahamathullah
,
I. G.
,
Sathiyagnanam
,
A. P.
,
Gopal
,
K.
,
Damodharan
,
D.
, and
Victor
,
D. P. M.
,
2020
, “
Effect of Retarded Injection Timing and EGR on Performance, Combustion and Emission Characteristics of a CRDi Diesel Engine Fueled With WHDPE Oil/Diesel Blends
,”
Fuel
,
278
, p.
118304
26.
Hunicz
,
J.
,
2014
, “
An Experimental Study of Negative Valve Overlap Injection Effects and Their Impact on Combustion in a Gasoline HCCI Engine
,”
Fuel
,
117
, pp.
236
250
.
27.
Ilhak
,
M. I.
,
Tangoz
,
S.
,
Akansu
,
S. O.
, and
Kahraman
,
N.
,
2019
, “
An Experimental Investigation of the Use of Gasoline-Acetylene Mixtures at Different Excess air Ratios in an SI Engine
,”
Energy
,
175
, pp.
434
444
.
28.
Heywood
,
J. B.
,
2003
,
Internal Combustion Engine Fundamentals
, 2nd ed.,
McGraw-Hill
,
New York
.
29.
Jiang
,
C.
,
Li
,
Z.
,
Liu
,
G.
,
Qian
,
Y.
, and
Lu
,
X.
,
2020
, “
Coordination of Fuel Reactivity and Injection Timing to Achieve Highly Efficient and Stable Gasoline Compression Ignition Combustion in a Wide Load Range
,”
Proc. Inst. Mech. Eng., Part D
,
234
(
7
), pp.
1840
1853
.
30.
Zhang
,
J.
,
Niu
,
S.
,
Zhang
,
Y.
,
Tang
,
C.
,
Jiang
,
X.
,
Hu
,
E.
, and
Huang
,
Z.
,
2013
, “
Experimental and Modeling Study of the Auto-Ignition of n-Heptane/n-Butanol Mixtures
,”
Combust. Flame
,
160
(
1
), pp.
31
39
.
31.
Xu
,
P.
,
Ji
,
C.
,
Wang
,
S.
,
Cong
,
X.
,
Ma
,
Z.
,
Tang
,
C.
,
Meng
,
H.
, and
Shi
,
C.
,
2020
, “
Effects of Direct Water Injection on Engine Performance in Engine Fueled With Hydrogen at Varied Excess Air Ratios and Spark Timing
,”
Fuel
,
269
, p.
117209
.
32.
Hagos
,
F. Y.
,
Aziz AR
,
A.
,
Sulaiman
,
S. A.
, and
Mamat
,
R.
,
2019
, “
Engine Speed and Air-Fuel Ratio Effect on the Combustion of Methane Augmented Hydrogen Rich Syngas in DI SI Engine
,”
Int. J. Hydrogen Energy
,
44
(
1
), pp.
477
486
.
33.
Hasan Altaie
,
M. A.
,
Janius
,
R. B.
,
Rashid
,
U.
,
Taufiq-Yap
,
Y. H.
,
Yunus
,
R.
,
Zakaria
,
R.
, and
Adam
,
N. M.
,
2015
, “
Performance and Exhaust Emission Characteristics of Direct-Injection Diesel Engine Fueled With Enriched Biodiesel
,”
Energy Convers. Manage.
,
106
, pp.
365
372
.
34.
Sarıkoç
,
S.
,
2021
, “
Effect of H2 Addition to Methanol-Gasoline Blend on an SI Engine at Various Lambda Values and Engine Loads: A Case of Performance, Combustion, and Emission Characteristics
,”
Fuel
,
297
, p.
120732
.
35.
Raheman
,
H.
, and
Ghadge
,
S. V.
,
2007
, “
Performance of Compression Ignition Engine With Mahua (Madhuca Indica) Biodiesel
,”
Fuel
,
86
(
16
), pp.
2568
2573
.
36.
Wang
,
Q.
,
Wei
,
L.
,
Pan
,
W.
, and
Yao
,
C.
,
2015
, “
Investigation of Operating Range in a Methanol Fumigated Diesel Engine
,”
Fuel
,
140
, pp.
164
170
.
37.
Shi
,
L.
,
Ji
,
C.
,
Wang
,
S.
,
Su
,
T.
,
Cong
,
X.
,
Wang
,
D.
, and
Tang
,
C.
,
2019
, “
Effects of Second Injection Timing on Combustion Characteristics of the Spark Ignition Direct Injection Gasoline Engines With Dimethyl Ether Enrichment in the Intake Port
,”
Energy
,
180
, pp.
10
18
.
38.
Feng
,
D.
,
Wei
,
H.
,
Pan
,
M.
,
Zhou
,
L.
, and
Hua
,
J.
,
2018
, “
Combustion Performance of Dual-Injection Using n-Butanol Direct-Injection and Gasoline Port Fuel-Injection in a SI Engine
,”
Energy
,
160
, pp.
573
581
.
39.
Kim
,
D.
,
Ekoto
,
I.
,
Colban
,
W. F.
, and
Miles
,
P. C.
,
2009
, “
In-cylinder CO and UHC Imaging in a Light-Duty Diesel Engine During PPCI Low-Temperature Combustion
,”
SAE Int. J. Fuels Lubr.
,
1
(
1
), pp.
933
956
.
40.
Zhao
,
L.
,
Wang
,
X.
,
Wang
,
D.
, and
Su
,
X.
,
2020
, “
Investigation of the Effects of Lean Mixtures on Combustion and Particulate Emissions in a DISI Engine Fueled With Bioethanol-Gasoline Blends
,”
Fuel
,
260
, p.
116096
.
41.
Naeve
,
N.
,
He
,
Y.
,
Deng
,
J.
,
Wang
,
M.
, and
Ma
,
F.
,
2011-01-0920
, “
Waste Coke Oven Gas Used as a Potential Fuel for Engines
,”
SAE Technical Paper
,
Detroit, MI
.
42.
Yilmaz
,
N.
,
Atmanli
,
A.
, and
Vigil
,
F. M.
,
2018
, “
Quaternary Blends of Diesel, Biodiesel, Higher Alcohols and Vegetable Oil in a Compression Ignition Engine
,”
Fuel
,
212
, pp.
462
469
.
43.
Rami Reddy
,
S.
,
Murali
,
G.
,
Ahamad Shaik
,
A.
,
Dhana Raju
,
V.
, and
Sreekara Reddy
,
M. B. S.
,
2021
, “
Experimental Evaluation of Diesel Engine Powered With Waste Mango Seed Biodiesel at Different Injection Timings and EGR Rates
,”
Fuel
,
285
, p.
119047
.
44.
Nour
,
M.
,
Attia
,
A. M. A.
, and
Nada
,
S. A.
,
2019
, “
Combustion, Performance and Emission Analysis of Diesel Engine Fuelled by Higher Alcohols (Butanol, Octanol and Heptanol)/Diesel Blends
,”
Energy Convers. Manage.
,
185
, pp.
313
329
.
45.
Kim
,
H. J.
,
Jo
,
S.
,
Lee
,
J.-T.
, and
Park
,
S.
,
2020
, “
Biodiesel Fueled Combustion Performance and Emission Characteristics Under Various Intake air Temperature and Injection Timing Conditions
,”
Energy
,
206
, p.
118154
.
46.
Seongin
,
J.
,
Hyung
,
J. K.
, and
Suhan
,
P.
,
2020
, “
Effects of High Intake-Air Temperature on Emission Characteristics Under Constant Charging Efficiency
,”
Fuel
,
273
, p.
117733
.
You do not currently have access to this content.