Abstract

Phasing of combustion metrics close to the optimum values across operation range is necessary to avail benefits of reactivity controlled compression ignition (RCCI) engines. Parameters like start of combustion occurrence crank angle (CA) (θsoc), occurrence of burn rate fraction reaching 50% (θ50), mean effective pressure from indicator diagram (IMEP), etc. are described as combustion metrics. These metrics act as markers for the macroscopic state of combustion. Control of these metrics in RCCI engine is relatively complex due to the nature of ignition. As direct combustion control is challenging, alternative methods like combustion physics-derived models are a subject of research interest. In this work, a composite predictive model was proposed by integrating trained random forest (RF) machine learning and artificial neural networks (ANNs) to combustion physics-derived modified Livengood–Wu integral, parametrized double-Wiebe function, autoignition front propagation speed-based correlations, and residual gas fraction model. The RF machine learning established a correlative relationship between physics-based model coefficients and engine operating condition. The ANN developed a similar correlation between residual gas fraction parameters and engine operating condition. The composite model was deployed for the predictions of θsoc, θ50, and IMEP as RCCI engine combustion metrics. Experimental validation showed an error standard deviation (σ68.3,err) of 0.67°CA, 1.19°CA, 0.223 bar and symmetric mean absolute percentage error of 6.92%, 7.87%, and 4.01% for the predictions of θsoc, θ50, and IMEP, respectively, on cycle to cycle basis. Wide range applicability, lesser experiments for model calibration, low computational costs, and utility for control applications were the benefits of the proposed predictive model.

References

1.
Kokjohn
,
S. L.
,
Splitter
,
D. A.
,
Hanson
,
R. M.
,
Reitz
,
R. D.
,
Manente
,
V.
, and
Johansson
,
B.
,
2011
, “
Modeling Charge Preparation and Combustion in Diesel Fuel, Ethanol, and Dual-Fuel PCCI Engines
,”
At. Sprays
,
21
(
2
), pp.
107
119
.
2.
Splitter
,
D.
,
Reitz
,
R. D.
, and
Hanson
,
R.
,
2010
, “
High Efficiency, Low Emissions RCCI Combustion by Use of a Fuel Additive
,”
SAE Int. J. Fuels Lubr.
,
3
(
2
), pp.
742
756
.
3.
Yang
,
B.
,
Duan
,
Q.
,
Liu
,
B.
, and
Zeng
,
K.
,
2020
, “
Parametric Investigation of Low Pressure Dual-Fuel Direct Injection on the Combustion Performance and Emissions Characteristics in a RCCI Engine Fueled With Diesel and CH4
,”
Fuel
,
260
, p.
116408
.
4.
Mishra
,
C.
, and
Subbarao
,
P. M. V.
,
2019
, “
Experimental Investigation and Thermodynamic Modelling of an RCCI Engine With Gasoline and Ethanol as Pilot Fuels
,”
ASME 2019 Internal Combustion Engine Division Fall Technical Conference (ICEF 2019)
,
Chicago, IL
,
Oct. 20–23
, pp.
1
13
.
5.
Indrajuana
,
A.
,
Bekdemir
,
C.
,
Luo
,
X.
, and
Willems
,
F.
,
2016
, “
Robust Multivariable Feedback Control of Natural Gas-Diesel RCCI Combustion
,”
IFAC-PapersOnLine
,
49
(
11
), pp.
217
222
.
6.
Sui
,
W.
,
González
,
J. P.
, and
Hall
,
C. M.
,
2018
, “
Combustion Phasing Modelling of Dual Fuel Engines
,”
IFAC-PapersOnLine
,
51
(
31
), pp.
319
324
.
7.
Kakoee
,
A.
,
Bakhshan
,
Y.
,
Barbier
,
A.
,
Bares
,
P.
, and
Guardiola
,
C.
,
2020
, “
Modeling Combustion Timing in an RCCI Engine by Means of a Control Oriented Model
,”
Control Eng. Pract.
,
97
, p.
104321
.
8.
Carlucci
,
A. P.
,
Laforgia
,
D.
,
Motz
,
S.
,
Saracino
,
R.
, and
Wenzel
,
S. P.
,
2014
, “
Advanced Closed Loop Combustion Control of a LTC Diesel Engine Based on In-Cylinder Pressure Signals
,”
Energy Convers. Manage.
,
77
, pp.
193
207
.
9.
Luo
,
X.
,
Wang
,
S.
,
De Jager
,
B.
, and
Willems
,
P.
,
2015
, “
Cylinder Pressure-Based Combustion Control With Multi-Pulse Fuel Injection
,”
IFAC-PapersOnLine
,
28
(
15
), pp.
181
186
.
10.
Willems
,
F.
,
2018
, “
Is Cylinder Pressure-Based Control Required to Meet Future HD Legislation?
,”
IFAC-PapersOnLine
,
51
(
31
), pp.
111
118
.
11.
Zhu
,
D.
,
Deng
,
J.
,
Wang
,
J.
,
Wang
,
S.
,
Zhang
,
H.
,
Andert
,
J.
, and
Li
,
L.
,
2020
, “
Development and Application of Ion Current/Cylinder Pressure Cooperative Combustion Diagnosis and Control System
,”
Energies
,
13
(
21
), pp.
5656
.
12.
Kirsten
,
M.
,
Pirker
,
G.
,
Redtenbacher
,
C.
,
Wimmer
,
A.
, and
Chmela
,
F.
,
2016
, “
Advanced Knock Detection for Diesel/Natural Gas Engine Operation
,”
SAE Int. J. Eng.
9
(
3
), pp.
1571
1583
.
13.
Khodadadi Sadabadi
,
K.
,
Shahbakhti
,
M.
,
Bharath
,
A. N.
, and
Reitz
,
R. D.
,
2016
, “
Modeling of Combustion Phasing of a Reactivity-Controlled Compression Ignition Engine for Control Applications
,”
Int. J. Eng. Res.
,
17
(
4
), pp.
421
435
.
14.
Mishra
,
C.
, and
Subbarao
,
P. M. V.
,
2021
, “
Design, Development and Testing a Hybrid Control Model for RCCI Engine Using Double Wiebe Function and Random Forest Machine Learning
,”
Control Eng. Pract.
,
113
, p.
104857
.
15.
Livengood
,
J. C.
, and
Wu
,
P. C.
,
1955
, “
Correlation of Autoignition Phenomena in Internal Combustion Engines and Rapid Compression Machines
,”
Symp. Combust.
,
5
(
1
), pp.
347
356
.
16.
Pan
,
J.
,
Zhao
,
P.
,
Law
,
C. K.
, and
Wei
,
H.
,
2016
, “
A Predictive Livengood-Wu Correlation for Two-Stage Ignition
,”
Int. J. Eng. Res.
,
17
(
8
), pp.
825
835
.
17.
DelVescovo
,
D.
,
Kokjohn
,
S.
, and
Reitz
,
R.
,
2016
, “
The Development of an Ignition Delay Correlation for PRF Fuel Blends From PRF0 (n-Heptane) to PRF100 (Iso-Octane)
,”
SAE Int. J. Eng.
,
9
(
1
), pp.
520
535
.
18.
Tao
,
M.
,
Zhao
,
P.
,
Szybist
,
J. P.
,
Lynch
,
P.
, and
Ge
,
H.
,
2019
, “
Insights Into Engine Autoignition: Combining Engine Thermodynamic Trajectory and Fuel Ignition Delay Iso-Contour
,”
Combust. Flame
,
200
, pp.
207
218
.
19.
Hernández
,
J. J.
,
Lapuerta
,
M.
, and
Sanz-Argent
,
J.
,
2014
, “
Autoignition Prediction Capability of the Livengood-Wu Correlation Applied to Fuels of Commercial Interest
,”
Int. J. Eng. Res.
,
15
(
7
), pp.
817
829
.
20.
Swan
,
K.
,
Shahbakhti
,
M.
, and
Koch
,
C. R.
,
2006
, “
Predicting Start of Combustion Using a Modified Knock Integral Method for an HCCI Engine
,”
SAE 2006 World Congress Exhibition
,
Detroit, MI
,
Apr. 3–6
,
SAE International
, pp.
1
14
.
21.
Namar
,
M. M.
, and
Jahanian
,
O.
,
2017
, “
A Simple Algebraic Model for Predicting HCCI Auto-Ignition Timing According to Control Oriented Models Requirements
,”
Energy Convers. Manage.
,
154
, pp.
38
45
.
22.
Kondipati
,
N. N. T.
,
Arora
,
J. K.
,
Bidarvatan
,
M.
, and
Shahbakhti
,
M.
,
2017
, “
Modeling, Design and Implementation of a Closed-Loop Combustion Controller for an RCCI Engine
,”
Proceedings of the American Control Conference
,
Seattle, WA
,
May 24–26
, pp.
4747
4752
.
23.
Raut
,
A.
,
Irdmousa
,
B. K.
, and
Shahbakhti
,
M.
,
2018
, “
Dynamic Modeling and Model Predictive Control of an RCCI Engine
,”
Control Eng. Pract.
,
81
, pp.
129
144
.
24.
Mishra
,
C.
, and
Subbarao
,
P. M. V.
,
2021
, “
A Comparative Study of Physics Based Grey-Box and Neural Network Trained Black-Box Dynamic Models in an RCCI Engine Control Parameter Prediction
,”
SAE Technical Paper
,
SAE International
, pp.
1
17
.
25.
Vibe II
,
1956
, “
Semi-Empirical Expression for Combustion Rate in Engines
,”
Proc. Conf. Pist. Engines
,
USSR Acad. Sci.
,
Moscow
, pp.
185
191
.
26.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Single and Double Wiebe Function Combustion Model for a Heavy-Duty Diesel Engine Retrofitted to Natural-Gas Spark-Ignition
,”
Appl. Energy
,
248
, pp.
95
103
.
27.
Valecha
,
P.
,
Mishra
,
C.
,
Subbarao
,
P. M. V.
, and
Das
,
P.
,
2018
, “
Development of Improved Thermodynamic Model Using Cylinder Blow by and Double-Wiebe Functions for High Speed Diesel Engine
,”
SAE Technical Paper 2018
,
April 1–15
.
28.
Yeliana
,
Y.
,
Cooney
,
C.
,
Worm
,
J.
,
Michalek
,
D. J.
, and
Naber
,
J. D.
,
2011
, “
Estimation of Double-Wiebe Function Parameters Using Least Square Method for Burn Durations of Ethanol-Gasoline Blends in Spark Ignition Engine Over Variable Compression Ratios and EGR Levels
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2213
2220
.
29.
Mishra
,
C.
, and
Subbarao
,
P. M. V.
,
2021
, “
Stochastic Cycle to Cycle Prediction in a Reactivity Controlled Compression Ignition Engine Using Double Wiebe Function
,”
SAE Technical Paper
,
SAE International
, pp.
1
18
.
30.
Karimkashi
,
S.
,
Kahila
,
H.
,
Kaario
,
O.
,
Larmi
,
M.
, and
Vuorinen
,
V.
,
2020
, “
A Numerical Study on Combustion Mode Characterization for Locally Stratified Dual-Fuel Mixtures
,”
Combust. Flame
,
214
, pp.
121
135
.
31.
Larimore
,
J.
,
Hellström
,
E.
,
Jade
,
S.
,
Stefanopoulou
,
A. G.
, and
Jiang
,
L.
,
2015
, “
Real-Time Internal Residual Mass Estimation for Combustion With High Cyclic Variability
,”
Int. J. Eng. Res.
,
16
(
3
), pp.
474
484
.
32.
Fitzgerald
,
R. P.
,
Steeper
,
R.
,
Snyder
,
J.
,
Hanson
,
R.
, and
Hessel
,
R.
,
2010
, “
Determination of Cycle Temperatures and Residual Gas Fraction for HCCI Negative Valve Overlap Operation
,”
SAE Technical Paper
.
33.
Hellström
,
E.
,
Stefanopoulou
,
A.
,
Vavra
,
J.
,
Babajimopoulos
,
A.
,
Assanis
,
D. N.
,
Jiang
,
L.
, and
Yilmaz
,
H.
,
2012
, “
Understanding the Dynamic Evolution of Cyclic Variability at the Operating Limits of HCCI Engines With Negative Valve Overlap
,”
SAE Int. J. Eng.
,
5
(
3
), pp.
995
1008
.
34.
Javed
,
T.
,
Lee
,
C.
,
AlAbbad
,
M.
,
Djebbi
,
K.
,
Beshir
,
M.
,
Badra
,
J.
,
Curran
,
H.
, and
Farooq
,
A.
,
2016
, “
Ignition Studies of n-Heptane/Iso-Octane/Toluene Blends
,”
Combust. Flame
,
171
, pp.
223
233
.
35.
Zeldovich
,
Y. B.
,
1980
, “
Regime Classification of an Exothermic Reaction With Nonuniform Initial Conditions
,”
Combust. Flame
,
39
(
2
), pp.
211
214
.
36.
Bhagatwala
,
A.
,
Sankaran
,
R.
,
Kokjohn
,
S.
, and
Chen
,
J. H.
,
2015
, “
Numerical Investigation of Spontaneous Flame Propagation Under RCCI Conditions
,”
Combust. Flame
,
162
(
9
), pp.
3412
3426
.
37.
Sankaran
,
R.
,
Im
,
H. G.
,
Hawkes
,
E. R.
, and
Chen
,
J. H.
,
2005
, “
The Effects of Non-Uniform Temperature Distribution on the Ignition of a Lean Homogeneous Hydrogen-Air Mixture
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
875
882
.
38.
Im
,
H. G.
,
Pal
,
P.
,
Wooldridge
,
M. S.
, and
Mansfield
,
A. B.
,
2015
, “
A Regime Diagram for Autoignition of Homogeneous Reactant Mixtures With Turbulent Velocity and Temperature Fluctuations
,”
Combust. Sci. Technol
,
187
(
8
), pp.
1263
1275
.
39.
Pal
,
P.
,
Valorani
,
M.
,
Arias
,
P. G.
,
Im
,
H. G.
,
Wooldridge
,
M. S.
,
Ciottoli
,
P. P.
, and
Galassi
,
R. M.
,
2017
, “
Computational Characterization of Ignition Regimes in a Syngas/Air Mixture With Temperature Fluctuations
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3705
3716
.
40.
Pal
,
P.
,
Mansfield
,
A. B.
,
Arias
,
P. G.
,
Wooldridge
,
M. S.
, and
Im
,
H. G.
,
2015
, “
A Computational Study of Syngas Auto-Ignition Characteristics at High-Pressure and Low-Temperature Conditions With Thermal Inhomogeneities
,”
Combust. Theory Modell.
,
19
(
5
), pp.
587
601
.
41.
Luong
,
M. B.
,
Hernández Pérez
,
F. E.
, and
Im
,
H. G.
,
2020
, “
Prediction of Ignition Modes of NTC-Fuel/Air Mixtures With Temperature and Concentration Fluctuations
,”
Combust. Flame
,
213
, pp.
382
393
.
42.
Kelley
,
C. T.
,
1999
, “
Iterative Methods for Optimization
,”
Society for Industrial and Applied Mathematics
.
43.
Find Minimum of Unconstrained Multivariable Function Using Derivative-Free Method—MATLAB fminsearch—MathWorks India,
n.d.
, https://in.mathworks.com/help/matlab/ref/fminsearch.html, Accessed April 28, 2021.
44.
Ahmad
,
M. W.
,
Mourshed
,
M.
, and
Rezgui
,
Y.
,
2017
, “
Trees vs Neurons: Comparison Between Random Forest and ANN for High-Resolution Prediction of Building Energy Consumption
,”
Energy Build
,
147
, pp.
77
89
.
45.
Uddin
,
S.
,
Khan
,
A.
,
Hossain
,
M. E.
, and
Moni
,
M. A.
,
2019
, “
Comparing Different Supervised Machine Learning Algorithms for Disease Prediction
,”
BMC Med. Inf. Decis. Making
,
19
(
1
), pp.
77
89
.
46.
Zahedi
,
P.
,
Parvandeh
,
S.
,
Asgharpour
,
A.
,
McLaury
,
B. S.
,
Shirazi
,
S. A.
, and
McKinney
,
B. A.
,
2018
, “
Random Forest Regression Prediction of Solid Particle Erosion in Elbows
,”
Powder Technol.
,
338
, pp.
983
992
.
47.
Yesilkant
,
C. M.
,
2020
, “
Spatio-Temporal Estimation of the Daily Cases of COVID-19 in Worldwide Using Random Forest Machine Learning Algorithm
,”
Chaos Solitons Fractals
,
140
, pp.
110210
.
48.
Prasad
,
A. M.
,
Iverson
,
L. R.
, and
Liaw
,
A.
,
2006
, “
Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction
,”
Ecosystems
,
9
(
2
), pp.
181
199
.
49.
Egan
,
D.
,
Koli
,
R.
,
Zhu
,
Q.
, and
Prucka
,
R.
,
2019
, “
Use of Machine Learning for Real-Time Non-Linear Model Predictive Engine Control
,”
WCX SAE World Congress Exposition
,
Detroit, MI
,
Apr. 9-11
,
SAE International
, pp.
1
15
.
50.
Anfinsen
,
H.
, and
Aamo
,
O. M.
,
2019
, “
Model Reference Adaptive Control
,”
Commun. Control Eng.
, pp.
227
253
.
51.
Bahri
,
B.
,
Shahbakhti
,
M.
, and
Aziz
,
A. A.
,
2017
, “
Real-Time Modeling of Ringing in HCCI Engines Using Artificial Neural Networks
,”
Energy
,
125
, pp.
509
518
.
52.
Choi
,
Y.
, and
Chen
,
J. Y.
,
2005
, “
Fast Prediction of Start-of-Combustion in HCCI With Combined Artificial Neural Networks and Ignition Delay Model
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2711
2718
.
53.
Liu
,
J.
,
Ulishney
,
C.
, and
Dumitrescu
,
C. E.
,
2021
, “
Random Forest Machine Learning Model for Predicting Combustion Feedback Information of a Natural Gas Spark Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012301
.
54.
Janakiraman
,
V. M.
,
Nguyen
,
X. L.
, and
Assanis
,
D.
,
2016
, “
An ELM Based Predictive Control Method for HCCI Engines
,”
Eng. Appl. Artif. Intell.
,
48
, pp.
106
118
.
55.
Mirhassani
,
M.
,
Chen
,
X.
,
Tahmasebi
,
A.
, and
Ahmadi
,
M.
,
2006
, “
On Control of HCCI Combustion-Neural Network Approach
,”
Proceedings of the IEEE International Conference Control Applications
,
Munich, Germany
,
Oct. 4–6
, pp.
1669
1674
.
56.
Kshirsagar
,
C. M.
, and
Anand
,
R.
,
2017
, “
Artificial Neural Network Applied Forecast on a Parametric Study of Calophyllum Inophyllum Methyl Ester-Diesel Engine Out Responses
,”
Appl. Energy
,
189
, pp.
555
567
.
57.
Indrajuana
,
A.
,
Bekdemir
,
C.
,
Feru
,
E.
, and
Willems
,
F.
,
2018
, “
Towards Model-Based Control of RCCI-CDF Mode-Switching in Dual Fuel Engines
,”
SAE Technical Paper
.
You do not currently have access to this content.