Abstract

In this paper, techniques have been developed to evaluate performance of steam, solvents, and hybrid steam-solvent processes in a post-CHOPS reservoir with consideration of wormhole network. With the experimentally determined properties of injected gases and reservoir fluids, history matching is accomplished for the reservoir geological model conditioned to the fluid and sand production profiles together with pressure. Meanwhile, the wormhole network is characterized with the pressure gradient-based (PGB) sand failure criterion. Once the history matching is finished, the calibrated reservoir geological model can be used to quantify the contributions of steam, solvents, and hybrid steam-solvent processes under various conditions. The results show that huff-n-puff processes have a very good performance on oil production and recovery when wormhole network is fully generated and propagated. Among all the solvent-based methods, a pure CO2 huff-n-puff process has been proven to be more efficient than flue gas, while the addition of alkane solvents is also beneficial to oil recovery compared with CO2 only method. Since the addition of C3H8 and n-C4H10 will significantly decrease the heavy oil viscosity and enhance the swelling factor, all hybrid steam-solvent injection achieves high oil recovery by taking the advantage of both hot steam and solvents injection.

References

1.
Coskuner
,
G.
, and
Huang
,
H.
,
2020
, “
Enhanced Oil Recovery in Post-CHOPS Cold Heavy Oil Production With Sand Heavy Oil Reservoirs of Alberta and Saskatchewan Part 2: Field Piloting of Cycling Solvent Injection
,”
The SPE Canada Heavy Oil Technical Conference
,
Calgary, AB
,
Mar. 18–19
, Paper SPE-199947-MS.
2.
Huang
,
W. S.
,
Marcum
,
B. E.
,
Chase
,
M. R.
, and
Yu
,
C. L.
,
1998
, “
Cold Production of Heavy Oil From Horizontal Wells in the Frog Lake Field
,”
SPE J.
,
6
(
1
), pp.
551
555
.
3.
Wang
,
J.
,
Walters
,
D.
,
Wan
,
R. G.
, and
Settari
,
A.
,
2005
, “
Prediction of Volumetric Sand Production and Wellbore Stability Analysis of A Well at Different Completion Schemes
,”
The Alaska Rock and the 40th Symposium on Rock Mechanics
,
Anchorage, AK
,
June 25–29
, Paper ARMA/USRMS 05-842.
4.
Haddad
,
A. S.
, and
Gates
,
I. D.
,
2015
, “
Modeling of Cold Heavy Oil Production With Sand (CHOPS) Using a Fluidized Sand Algorithm
,”
Fuel
,
158
, pp.
937
947
.
5.
Wang
,
Y.
, and
Chen
,
C. Z.
,
2004
, “
Simulating Cold Heavy Oil Production With Sand by Reservoir-Wormhole Model
,”
J. Can. Pet. Technol.
,
43
(
4
), pp.
39
44
.
6.
Istchenko
,
C.
, and
Gates
,
I. D.
,
2011
, “
The Well-Wormhole Model of Cold Production of Heavy Oil Reservoirs
,”
The SPE Heavy Oil Conference and Exhibition
,
Kuwait
,
Dec. 12–14
, Paper SPE-150633-MS.
7.
Istchenko
,
C. M.
, and
Gates
,
I. D.
,
2014
, “
Well/Wormhole Model of Cold Heavy-Oil Production With Sand
,”
SPE J.
,
19
(
2
), pp.
260
269
.
8.
Shokri
,
A. R.
, and
Babadagli
,
T.
,
2016
, “
Field Scale Modeling of CHOPS and Solvent/Thermal Based Post CHOPS EOR Applications Considering Non-Equilibrium Foamy Oil Behavior and Realistic Representation of Wormholes
,”
SPE J.
,
137
, pp.
144
156
.
9.
Dong
,
M.
,
Huang
,
S.
, and
Hutchence
,
K.
,
2004
, “
Methane Pressure Cycling Process With Horizontal Wells for Thin Heavy Oil Reservoirs
,”
The SPE Asia Pacific Oil and Gas Conference and Exhibition
,
Perth, Australia
,
Oct. 18–20
, Paper SPE-88500-MS.
10.
Wan
,
T.
,
Wang
,
W.
,
Jiang
,
J.
, and
Zhang
,
Y.
,
2018
, “
Pore-Scale Analysis of Gas Huff-n-Puff Enhanced Oil Recovery and Waterflooding Process
,”
Fuel
,
215
, pp.
561
571
.
11.
Yu
,
W.
,
Lashgari
,
H. R.
,
Wua
,
K.
, and
Sepehrnoori
,
K.
,
2018
, “
CO2 Injection for Enhanced Oil Recovery in Bakken Tight Oil Reservoirs
,”
Fuel
,
159
, pp.
354
363
.
12.
Zhao
,
G.
, and
Liu
,
X.
,
2005
, “
A Fractal Wormhole Model for Cold Heavy Oil Production
,”
J. Can. Pet. Technol.
,
44
(
9
), pp.
31
36
.
13.
Rivero
,
J. A.
,
Coskuner
,
G.
,
Asghari
,
K.
,
Law
,
D. H.-S.
,
Pearce
,
A.
,
Newman
,
R.
,
Birchwood
,
R.
,
Zhao
,
J.
, and
Ingham
,
J.
,
2010
, “
Modeling CHOPS Using A Coupled Flow-Geomechanics Simulator With Nonequilibrium Foamy-Oil Reactions: A Multiwell History Matching Study
,”
The SPE Annual Technical Conference and Exhibition
,
Florence, Italy
,
Sept. 19–22
, Paper SPE-135490-MS.
14.
Fan
,
Z.
, and
Yang
,
D.
,
2016
, “
Characterization of Wormhole Growth and Its Applications for CHOPS Wells Using History Matching
,”
The SPE Improved Oil Recovery Conference
,
Tulsa, OK
,
Apr. 11–413
, Paper SPE-179617-MS.
15.
Fan
,
Z.
, and
Yang
,
D.
,
2017
, “
Quantification of Sand Production by Use of a Pressure-Gradient-Based Sand Failure Criterion
,”
The SPE Canada Heavy Oil Technical Conference
,
Calgary, AB
,
Feb. 15–16
, Paper SPE-185009-MS.
16.
Fan
,
Z.
,
Yang
,
D.
, and
Li
,
X.
,
2020
, “
Characterization of Multiphase Flow in CHOPS Processes Using a Pragmatic Framework
,”
SPE Reservoir Eval. Eng.
,
23
(
3
), pp.
930
942
.
17.
Fan
,
Z.
,
Yang
,
D.
, and
Li
,
X.
,
2019
, “
Quantification of Sand Production Using a Pressure-Gradient-Based Sand Failure Criterion
,”
SPE J.
,
24
(
3
), pp.
988
1001
.
18.
Yang
,
S.
,
Fan
,
Z.
, and
Yang
,
D.
,
2020
, “
A Modified Pressure-Gradient-Based (PGB) Sand Failure Criterion for Dynamically and Preferentially Characterizing Wormhole Growth and Propagation During CHOPS Processes
,”
J. Pet. Sci. Eng.
,
192
, p.
107250
.
19.
Jha
,
K. N.
,
1986
, “
A Laboratory Study of Heavy Oil Recovery With Carbon Dioxide
,”
J. Can. Pet. Technol.
,
25
(
2
), pp.
54
63
.
20.
Li
,
S.
,
Li
,
B.
,
Zhang
,
Q.
,
Li
,
Z.
, and
Yang
,
D.
,
2018
, “
Effect of CO2 on Heavy Oil Recovery and Physical Properties in Huff-n-Puff Processes Under Reservoir Conditions
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072907
.
21.
Butler
,
R. M.
,
McNab
,
G. S.
, and
Lo
,
H. Y.
,
1981
, “
Theoretical Studies on the Gravity Drainage of Heavy Oil During In-Situ Steam Heating
,”
Can. J. Chem. Eng.
,
59
(
4
), pp.
455
460
.
22.
Vittoratos
,
E.
,
Scott
,
G. R.
, and
Beattie
,
C. I.
,
1990
, “
Cold Lake Cyclic Steam Stimulation: A Multiwell Process
,”
SPE J.
,
5
(
1
), pp.
19
24
.
23.
Bayestehparvin
,
B.
,
Farouq Ali
,
S. M.
, and
Abedi
,
J.
,
2019
, “
Solvent-Based and Solvent-Assisted Recovery Processes: State of the Art
,”
SPE Reservoir Eval. Eng.
,
22
(
1
), pp.
29
49
.
24.
Dyer
,
S. B.
,
Huang
,
S. S.
,
Farouq Ali
,
S. M.
, and
Jha
,
K. N. N.
,
1994
, “
Phase Behaviour and Scaled Model Studies of Prototype Saskatchewan Heavy Oils With Carbon Dioxide
,”
J. Can. Pet. Technol.
,
33
(
8
), pp.
42
48
.
25.
Martinez Gamboa
,
J. J.
, and
Leung
,
J. Y.
,
2019
, “
Design of Field-Scale Cyclic Solvent Injection Processes for Post-CHOPS Applications
,”
Can. J. Chem. Eng.
,
97
(
1
), pp.
123
132
.
26.
Gondiken
,
S.
,
1987
, “
Camurlu Field Immiscible CO2 Huff and Puff Pilot Project
,”
The Fifth SPE Middle East Oil Show
,
Manama, Bahrain
,
Mar. 7–10
, Paper SPE-15749-MS.
27.
Li
,
H.
,
Zheng
,
S.
, and
Yang
,
D.
,
2013
, “
Enhanced Swelling Effect and Viscosity Reduction of Solvent(s)/CO2/Heavy Oil Systems
,”
SPE J.
,
18
(
4
), pp.
695
705
.
28.
Ivory
,
J.
,
Chang
,
J.
,
Coates
,
R.
, and
Forshner
,
K.
,
2010
, “
Investigation of Cyclic Solvent Injection Process for Heavy Oil Recovery
,”
J. Can. Pet. Technol.
,
49
(
9
), pp.
22
33
.
29.
Bao
,
Y.
,
Wang
,
J.
, and
Gates
,
I. D.
,
2016
, “
On the Physics of Cyclic Steam Stimulation
,”
Energy
,
115
, pp.
969
985
.
30.
Lu
,
T.
,
Li
,
Z.
,
Fan
,
W.
, and
Li
,
S.
,
2016
, “
CO2 Huff and Puff for Heavy Oil Recovery After Primary Production
,”
Sci. Technol.
,
6
(
2
), pp.
288
301
.
31.
Firouz
,
A. Q.
, and
Torabi
,
F.
,
2012
, “
Feasibility Study of Solvent-Based Huff-n-Puff Method (Cyclic Solvent Injection) to Enhance Heavy Oil Recovery
,”
The SPE Heavy Oil Conference Canada
,
Calgary, AB, Canada
,
June 12–14
.
32.
Dake
,
L. P.
,
1978
,
Fundamentals of Reservoir Engineering
,
Elsevier
,
Amsterdam
.
33.
Arefmanesh
,
A.
,
Advani
,
S. G.
, and
Michaelides
,
E. E.
,
1992
, “
An Accurate Numerical Solution for Mass Diffusion-Induced Bubble Growth in Viscous Liquids Containing Limited Dissolved Gas
,”
Int. J. Heat Mass Transfer
,
35
(
7
), pp.
1711
1722
.
34.
Li
,
H.
, and
Yang
,
D.
,
2016
, “
Determination of Individual Diffusion Coefficients of Solvent-CO2 Mixture in Heavy Oil Using Pressure-Decay Method
,”
SPE J.
,
21
(
1
), pp.
131
143
.
35.
Zheng
,
S.
, and
Yang
,
D.
,
2017
, “
Experimental and Theoretical Determination of Diffusion Coefficients of CO2-Heavy Oil Systems by Coupling Heat and Mass Transfer
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022901
.
36.
Shi
,
Y.
, and
Yang
,
D.
,
2017
, “
Experimental and Theoretical Quantification of Nonequilibrium Phase Behaviour and Physical Properties of Foamy Oil Under Reservoir Conditions
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062902
.
37.
Li
,
X.
,
Li
,
H.
, and
Yang
,
D.
,
2013
, “
Determination of Multiphase Boundaries and Swelling Factors of Solvent(s)-CO2-Heavy Oil Systems at High Pressures and Elevated Temperatures
,”
Energy Fuels
,
27
(
3
), pp.
1293
1306
.
38.
Li
,
H.
, and
Yang
,
D.
,
2011
, “
Modified α Function for the Peng-Robinson Equation of State to Improve the Vapor Pressure Prediction of Non-Hydrocarbon and Hydrocarbon Compounds
,”
Energy Fuels
,
25
(
1
), pp.
215
223
.
39.
Li
,
X.
,
Yang
,
D.
, and
Fan
,
Z.
,
2017
, “
Vapor-Liquid Phase Boundaries and Swelling Factors of C3H8-n-C4H10-CO2-Heavy Oil Systems Under Reservoir Conditions
,”
Fluid Phase Equilib.
,
434
, pp.
211
221
.
40.
Zheng
,
S.
, and
Yang
,
D.
,
2016
, “
Determination of Diffusion Coefficients of C3H8/n-C4H10/CO2/Heavy-Oil Systems at High Pressures and Elevated Temperatures by Dynamic Volume Analysis
,”
SPE J.
,
22
(
3
), pp.
799
816
.
41.
Zheng
,
S.
,
Sun
,
H.
, and
Yang
,
D.
,
2016
, “
Coupling Heat and Mass Transfer for Determining Individual Diffusion Coefficient of a Hot C3H8-CO2 Mixture in Heavy Oil Under Reservoir Conditions
,”
Int. J. Heat Mass Transfer
,
102
, pp.
251
263
.
42.
Shi
,
Y.
,
Li
,
X.
, and
Yang
,
D.
,
2016
, “
Nonequilibrium Phase Behaviour of Alkane Solvent(s)-CO2-Heavy Oil Systems Under Reservoir Conditions
,”
Ind. Eng. Chem. Res.
,
55
(
10
), pp.
2860
2871
.
43.
Shi
,
Y.
,
Zheng
,
S.
, and
Yang
,
D.
,
2017
, “
Determination of Individual Diffusion Coefficients of Solvents-CO2-Heavy Oil Systems With Consideration of Natural Convection Induced by Swelling Effect
,”
Int. J. Heat Mass Transfer
,
107
, pp.
572
585
.
44.
Tharanivasan
,
A. K.
,
Yang
,
C.
, and
Gu
,
Y.
,
2006
, “
Measurements of Molecular Diffusion Coefficients of Carbon Dioxide, Methane, and Propane in Heavy Oil Under Reservoir Conditions
,”
Energy Fuels
,
20
(
6
), pp.
2509
2517
.
45.
Song
,
C.
, and
Pan
,
W.
,
2004
, “
Tri-reforming of Methane: A Novel Concept for Catalytic Production of Industrially Useful Synthesis Gas With Desired H2/CO Ratios
,”
Catal. Today
,
98
(
4
), pp.
463
484
.
46.
Ayala
,
D.
, and
Gates
,
I.
,
2018
, “
SAGD Circulation Phase: History-Match of Field Data in Lloydminster Reservoir Using A Discretized Thermal Wellbore Modelling Simulator
,”
The SPE Thermal Well Integrity and Design Symposium
,
Banff, AB
,
Nov. 27–29
, Paper SPE-193354-MS.
47.
McCabe
,
W. L.
,
Smith
,
J. C.
, and
Harriott
,
P.
,
1967
,
Unit Operations of Chemical Engineering
, Vol.
5
,
McGraw-Hill
,
New York
.
48.
Teja
,
A. S.
, and
Sandler
,
A. I.
,
1980
, “
A Corresponding States Equation for Saturated Liquid Densities. II. Application to the Calculation of Swelling Factors of CO2-Crude Oil Systems
,”
AIChE J.
,
26
(
3
), pp.
341
345
.
49.
Shi
,
Y.
, and
Yang
,
D.
,
2017
, “
Quantification of a Single Gas Bubble Growth in Solvent(s)-CO2-Heavy Oil Systems With Consideration of Multicomponent Diffusion Under Nonequilibrium Conditions
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022908
.
50.
Sun
,
R.
,
Yu
,
W.
,
Xu
,
F.
,
Pu
,
H.
, and
Miao
,
J.
,
2019
, “
Compositional Simulation of CO2 Huff-n-Puff Process in Middle Bakken Tight Oil Reservoirs With Hydraulic Fractures
,”
Fuel
,
236
, pp.
1446
1457
.
51.
Zheng
,
S.
,
Li
,
H.
, and
Yang
,
D.
,
2013
, “
Pressure Maintenance and Improving Oil Recovery With Immiscible CO2 Injection in Thin Heavy Oil Reservoirs
,”
J. Pet. Sci. Eng.
,
112
, pp.
139
152
.
52.
Zheng
,
S.
, and
Yang
,
D.
,
2013
, “
Pressure Maintenance and Improving Oil Recovery in Terms of Immiscible Water-Alternating-CO2 Processes in Thin Heavy Oil Reservoirs
,”
SPE Reservoir Eval. Eng.
,
16
(
1
), pp.
60
71
.
53.
Li
,
L.
,
Su
,
Y.
,
Hao
,
Y.
,
Zhan
,
S.
,
Lv
,
Y.
,
Zhao
,
Q.
, and
Wang
,
H.
,
2019
, “
A Comparative Study of CO2 and N2 Huff-n-Puff EOR Performance in Shale Oil Production
,”
J. Pet. Sci. Eng.
,
181
, p.
106174
.
54.
Li
,
H.
,
Yang
,
D.
, and
Tontiwachwuthikul
,
P.
,
2012
, “
Experimental and Theoretical Determination of Equilibrium Interfacial Tension for the Solvent(s)-CO2-Heavy Oil Systems
,”
Energy Fuels
,
26
(
3
), pp.
1776
1786
.
55.
Li
,
H.
,
Sun
,
H.
, and
Yang
,
D.
,
2017
, “
Effective Diffusion Coefficients of Gas Mixture in Heavy Oil Under Constant-Pressure Conditions
,”
Heat Mass Transfer
,
53
(
5
), pp.
1527
1540
.
56.
Mohebati
,
M. H.
,
Maini
,
B. B.
, and
Harding
,
T.
,
2013
, “
Numerical-Simulation Investigation of the Effect of Heavy-Oil Viscosity on the Performance of Hydrocarbon Additives in SAGD
,”
SPE Reservoir Eval. Eng.
,
15
(
2
), pp.
165
181
.
57.
Keshavarz
,
M.
,
Okuno
,
R.
, and
Babadagli
,
T.
,
2015
, “
Optimal Application Conditions for Steam/Solvent Coinjection
,”
SPE Reservoir Eval. Eng.
,
18
(
1
), pp.
20
38
.
58.
Bybee
,
K.
,
2007
, “
Screening Criteria for Carbon Dioxide Huff ‘n’ Puff Operations
,”
J. Pet. Technol.
,
59
(
1
), pp.
55
59
.
59.
Bustos Acevedo
,
C. A.
,
Yatte Garzon
,
F. C.
,
Lozano Guarnizo
,
E.
, and
Higuera
,
D.
,
2020
, “
New Alternative to Optimize Cyclic Steam Injection: Field Pilot
,”
The SPE Latin American and Caribbean Petroleum Engineering Conference, Virtual Event
,
July 27–31
, Paper SPE-199135-MS.
60.
Chang
,
J.
, and
Ivory
,
J.
,
2013
, “
Field-scale Simulation of Cyclic Solvent Injection (CSI)
,”
J. Can. Pet. Technol.
,
52
(
4
), pp.
251
265
.
61.
Istchenko
,
C.
, and
Gates
,
I. D.
,
2012
, “
The Well-Wormhole Model of CHOPS: History Match and Validation
,”
The SPE Heavy Oil Conference Canada
,
Calgary, AB
,
June 12–14
, Paper SPE-157795-MS.
62.
Sun
,
H.
,
Li
,
H.
, and
Yang
,
D.
,
2014
, “
Coupling Heat and Mass Transfer for A Gas Mixture-Heavy Oil System at High Pressures and Elevated Temperatures
,”
Int. J. Heat Mass Transfer
,
74
(
7
), pp.
173
184
.
63.
Kovscek
,
A.R.
,
2012
, “
Emerging Challenges and Potential Futures for Thermally Enhanced Oil Recovery
,”
J. Pet. Sci. Eng.
,
98–99
, pp.
130
143
.
You do not currently have access to this content.