Abstract

Conventional enhanced oil recovery (EOR) approaches are inefficient in unconventional reservoirs. This paper provides a novel approach to enhance oil recovery from unconventional oil reservoirs through synchronous inter-fracture injection and production (SiFIP) and asynchronous inter-fracture injection and production (AiFIP). The compartmental embedded discrete fracture model (cEDFM) is introduced to simulate complex fracture geometries to quantitatively evaluate the performance of SiFIP and AiFIP. EOR performances using multiple producing methods are investigated (i.e., depletion, fluid flood, fluid Huff and Puff, SiFIP, and AiFIP). Higher cumulative oil production rates can be achieved by AiFIP and SiFIP. AiFIP yields the highest oil recovery factor, two times higher than depletion. Compared with SiFIP, AiFIP may be a preferred method when CO2/water resources are short. The impacts of fracture and injection parameters on oil production are discussed. The feasible well completions for AiFIP and SiFIP are provided. AiFIP (CO2) achieves the best EOR performance among different producing methods. This paper demonstrates the feasibility of SiFIP and AiFIP to improve oil recovery. The proposed methods improve flooding performance by transforming fluid injection among wells to among hydraulic fractures from the same multi-fractured horizontal well (MFHW), which is a promising EOR approach in unconventional oil reservoirs. The proposed EOR method (AiFIP-CO2) can improve oil recovery and mitigate the emission of CO2 as well as reduce the waste of water resources.

References

1.
Holditch
,
S. A.
, and
Chianeli
,
R. R.
,
2008
, “
Factors That Will Influence Oil and Gas Supply and Demand in the 21st Century
,”
MRS Bull.
,
33
(
4
), pp.
317
323
.
2.
EIA
,
2014
, “
Shale Oil and Shale Gas Resources Are Globally Abundant
,” https://www.eia.gov/todayinenergy/detail.php?id=14431.
3.
Soeder
,
D.
,
2018
, “
The Successful Development of Gas and Oil Resources From Shales in North America
,”
J. Pet. Sci. Eng.
,
163
, pp.
399
420
.
4.
Tang
,
H.
,
Sun
,
Z.
,
He
,
Y.
,
Chai
,
Z.
,
Hasan
,
A. R.
, and
Killough
,
J.
,
2019
, “
Investigating the Pressure Characteristics and Production Performance of Liquid-Loaded Horizontal Wells in Unconventional Gas Reservoirs
,”
J. Pet. Sci. Eng.
,
176
, pp.
456
465
.
5.
He
,
Y.
,
Cheng
,
S.
,
Li
,
S.
,
Qin
,
J.
, and
Hu
,
L.
,
2017
, “
A Semianalytical Methodology to Diagnose the Locations of Underperforming Hydraulic Fractures Through Pressure-Transient Analysis in Tight Gas Reservoir
,”
SPE J.
,
22
(
3
), pp.
924
939
.
6.
McClure
,
M. W.
,
Babazadeh
,
M.
,
Shiozawa
,
S.
, and
Huang
,
J.
,
2016
, “
Fully Coupled Hydromechanical Simulation of Hydraulic Fracturing in 3D Discrete-Fracture Networks
,”
SPE J.
,
21
(
4
), pp.
1
302
.
7.
Shelley
,
R.
,
Shah
,
K.
,
Davidson
,
B.
,
Sheludko
,
S.
, and
Nejad
,
A.
,
2017
, “
Improving Hydraulic Fracture Design; a Key to Achieving a Higher Level of Multi-fractured Horizontal Well Performance
,”
SPE Hydraulic Fracturing Technology Conference and Exhibition
,
The Woodlands, Texas
,
Jan. 24–26
, SPE-184816.
8.
Niu
,
G.
,
Sun
,
J.
,
Parsegov
,
S.
, and
Schechter
,
D.
,
2017
, “
Integration of Core Analysis, Pumping Schedule and Microseismicity to Reduce Uncertainties of Production Performance of Complex Fracture Networks for Multi-stage Hydraulically Fractured Reservoirs
,”
SPE Eastern Regional Meeting
,
Lexington, Kentucky
,
Oct. 4–6
, SPE-187524-MS.
9.
Tang
,
J.
,
Li
,
J.
,
Tang
,
M.
, and
Xiao
,
L.
,
2019
, “
Investigation of Multiple Hydraulic Fractures Evolution and Well Performance in Lacustrine Shale Oil Reservoirs Considering Stress Heterogeneity
,”
Eng. Fract. Mech.
,
218
, p.
106569
.
10.
Guo
,
T.
,
Tang
,
S.
,
Liu
,
S.
,
Liu
,
X.
, and
Rui
,
Z.
,
2020
, “
Physical Simulation of Hydraulic Fracturing of Large-Sized Tight Sandstone Outcrops
,”
SPE J.
,
26
(
1
), pp.
372
393
.
11.
Liu
,
X.
,
Sun
,
H.
,
Lv
,
A.
, and
Fan
,
D.
,
2020
, “
Gas-Water Two Phased Productivity Analysis of Tight Gas Reservoir Based on Fracturing Fluid Flowback Data
,”
J. Northeast Pet. Univ.
,
44
(
2
), pp.
103
112
.
12.
U.S. Energy Information Administration
,
2021
,
Annual Energy Outlook.
,
U.S. Energy Information Administration
,
Washington, DC
.
13.
Singh
,
H.
, and
Cai
,
J.
,
2018
, “
Screening Improved Recovery Methods in Tight-Oil Formations by Injecting and Producing Through Fractures
,”
Int. J. Heat Mass Transfer
,
116
, pp.
977
993
.
14.
Gordon
,
D.
,
Sautin
,
Y.
, and
Wang
,
T.
,
2014
, “
China's Oil Future
,” https://carnegieendowment.org/2014/05/06/china-s-oil-future-pub-55437.
15.
Rystad Energy
,
2014
,
Shale Companies Have Proven More Efficient but Not More Productive
,
Rystad Energy
,
Oslo, Norway
.
16.
Gaswirth
,
S. B.
, and
Marra
,
K. R.
,
2015
, “
Geological Survey 2013 Assessment of Undiscovered Resources in the Bakken and Three Forks Formations of the U.S Williston Basin Province
,”
AAPG Bull.
,
99
(
4
), pp.
639
660
.
17.
Delaihdem
,
D. K.
,
2013
, “
Decline Curve Analysis and Enhanced Shale Oil Recovery Based on Eagle Ford Shale Data
,”
M.S. thesis
,
University of Alaska Fairbanks
,
Alaska
.
18.
Wachtmeister
,
H.
,
Lund
,
L.
,
Aleklett
,
K.
, and
Höök
,
M.
,
2017
, “
Production Decline Curves of Tight Oil Wells in Eagle Ford Shale
,”
Nat. Resour. Res.
,
26
(
3
), pp.
365
377
.
19.
Calderon
,
A. J.
, and
Pekney
,
N. J.
,
2020
, “
Optimization of Enhanced Oil Recovery Operations in Unconventional Reservoirs
,”
Appl. Energy
,
258
, p.
114072
.
20.
Huang
,
J.
,
Jin
,
T.
,
Barrufet
,
M. A.
, and
Killough
,
J.
,
2020
, “
Evaluation of CO2 Injection Into Shale Gas Reservoirs Considering Dispersed Distribution of Kerogen
,”
Appl. Energy
,
260
, p.
114285
.
21.
Wang
,
Z.
,
Liu
,
X.
,
Luo
,
H.
,
Peng
,
B.
, and
Rui
,
R.
,
2021
, “
Foaming Properties and Foam Structure of Produced Liquid in Alkali/Surfactant/Polymer Flooding Production
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), pp.
1
25
.
22.
Du
,
F.
, and
Nojabaei
,
B.
,
2020
, “
A Black-Oil Approach to Model Produced Gas Injection in Both Conventional and Tight Oil-Rich Reservoirs to Enhance Oil Recovery
,”
Fuel
,
263
, p.
116680
.
23.
Zhong
,
H.
,
Yang
,
T.
,
Yin
,
H.
,
Lu
,
J.
, and
Fu
,
C.
,
2020
, “
Role of Alkali Type in Chemical Loss and ASP-Flooding Enhanced Oil Recovery in Sandstone Formations
,”
SPE Reservoir Eval. Eng.
,
23
(
2
), pp.
431
445
.
24.
He
,
Y.
,
Qin
,
J.
,
Cheng
,
S.
, and
Chen
,
J.
,
2020
, “
Estimation of Fracture Production and Water Breakthrough Locations of Multi-Stage Fractured Horizontal Wells Combining Pressure-Transient Analysis and Electrical Resistance Tomography
,”
J. Pet. Sci. Eng.
,
194
, p.
107479
.
25.
Wei
,
B.
,
Song
,
T.
,
Gao
,
Y.
,
Xiang
,
H.
,
Xu
,
X.
,
Kadet
,
V.
,
Bai
,
J.
, and
Zhai
,
Z.
,
2020
, “
Effectiveness and Sensitivity Analysis of Solution Gas Re-injection in Baikouquan Tight Formation, Mahu Sag for Enhanced Oil Recovery
,”
Petroleum
,
6
(
3
), pp.
253
263
.
26.
Liu
,
S.
,
Zhang
,
L.
,
Zhang
,
K.
,
Zhou
,
J.
,
He
,
H.
, and
Hou
,
Z.
,
2019
, “
A Simplified and Efficient Method for Water Flooding Production Index Calculations in Low Permeable Fractured Reservoir
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112905
.
27.
Tang
,
Y.
,
Liao
,
S.
,
Lei
,
X.
,
Yu
,
G.
, and
Kang
,
X.
,
2019
, “
Study on Improving the Sweep Efficiency of CO2 Flooding in Low Permeability Fractured Reservoirs in Huang-3 Block
,”
Reservoir Eval. Dev.
,
9
(
3
), pp.
9
13
.
28.
He
,
Y.
,
Cheng
,
S.
,
Sun
,
Z.
,
Chai
,
Z.
, and
Rui
,
Z.
,
2020
, “
Improving Oil Recovery Through Fracture Injection and Production of Multiple Fractured Horizontal Wells
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
053002
.
29.
Yu
,
W.
,
Zhang
,
Y.
,
Varavei
,
A.
,
Sepehrnoori
,
K.
, and
Miao
,
J.
,
2019
, “
Compositional Simulation of CO2 Huff-n-Puff in Eagle Ford Tight Oil Reservoirs With CO2 Molecular Diffusion, Nanopore Confinement, and Complex Natural Fractures
,”
SPE Reservoir Eval. Eng.
,
22
(
2
), pp.
492
508
.
30.
Dombrowski
,
R. J.
,
Fonseca
,
E. R.
,
Karanikas
,
J. M.
, and
Fonseca
,
E. R.
,
2015
, “
Fluid Injection in Light Tight Oil Reservoirs
,” U.S. Patent No. 9127544.
31.
Zhu
,
P.
,
Balhoff
,
M.
, and
Mohanty
,
K.
,
2017
, “
Compositional Modeling of Fracture-to-Fracture Miscible Gas Injection in an Oil-Rich Shale
,”
J. Pet. Sci. Eng.
,
152
, pp.
628
638
.
32.
Yu
,
H.
,
Yang
,
Z.
,
Luo
,
L.
,
Liu
,
J.
,
Cheng
,
S.
,
Qu
,
X.
,
Lei
,
Q.
, and
Liu
,
J.
,
2019
, “
Application of Cumulative-in-Situ-Injection-Production Technology to Supplement Hydrocarbon Recovery among Fractured Tight Oil Reservoirs: A Case Study in Changing Oilfield, China
,”
Fuel
,
242
, pp.
804
808
.
33.
Cheng
,
S.
,
Wang
,
Y.
,
Lang
,
H.
,
Yu
,
H.
,
Zhu
,
C.
, and
Yang
,
B.
,
2017
, “
Feasibility of Inter-fracture Injection and Production for the Same Multistage Fractured Horizontal Well in Tight Oil Reservoir
,”
Acta Pet. Sin.
,
38
(
12
), pp.
1411
1419
.
34.
Azzolina
,
N.
,
Peck
,
W.
, and
Hamling
,
J.
,
2016
, “
How Green is My Oil? A Detailed Look at Greenhouse Gas Accounting for CO2-Enhanced Oil Recovery (CO2-EOR) Sites
,”
Int. J. Greenhouse Gas Control
,
51
, pp.
369
379
.
35.
Jiang
,
J.
,
Rui
,
Z.
,
Hazlett
,
R.
, and
Lu
,
J.
,
2019
, “
An Integrated Technical-Economic Model for Evaluating CO2 Enhanced Oil Recovery Development
,”
Appl. Energy
,
247
, pp.
190
211
.
36.
Ekechukwu
,
G. K.
,
Falode
,
O.
, and
Orodu
,
O. D.
,
2020
, “
Improved Method for the Estimation of Minimum Miscibility Pressure for Pure and Impure CO2–Crude Oil Systems Using Gaussian Process Machine Learning Approach
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
12303
.
37.
Yan
,
B.
,
Wang
,
Y.
, and
Killough
,
J. E.
,
2016
, “
Beyond Dual-Porosity Modeling for the Simulation of Complex Flow Mechanisms in Shale Reservoirs
,”
Comput. Geosci.
,
20
(
1
), pp.
69
91
.
38.
Warren
,
J. E.
, and
Root
,
P. J.
,
1963
, “
The Behavior of Naturally Fractured Reservoirs
,”
SPE J.
,
3
(
3
), pp.
245
255
.
39.
Hinkley
,
R.
,
Gu
,
Z.
,
Wong
,
T.
, and
Camilleri
,
D.
,
2013
, “
Multi-porosity Simulation of Unconventional Reservoirs
,”
SPE Unconventional Resources Conference Canada
,
Calgary, Alberta
,
Nov. 5–7
, SPE-167146-MS.
40.
Pruess
,
K.
, and
Narasimhan
,
T. N.
,
1985
, “
A Practical Method for Modeling Fluid and Heat Flow in Fractured Porous Media
,”
SPE J.
,
25
(
1
), pp.
14
26
.
41.
Wu
,
Y.
, and
Pruess
,
K.
,
1988
, “
A Multiple-Porosity Method for Simulation of Naturally Fractured Petroleum Reservoirs
,”
SPE Reservoir Eng.
,
1
(
3
), pp.
327
336
.
42.
Ouillon
,
G.
,
Castaing
,
C.
, and
Sornette
,
D.
,
1996
, “
Hierarchical Geometry of Faulting
,”
J. Geophys. Res.: Solid Earth
,
101
(
B3
), pp.
5477
5487
.
43.
Karimi-Fard
,
M.
, and
Firoozabadi
,
A.
,
2003
, “
Numerical Simulation of Water Injection in Fractured Media Using the Discrete-Fracture Model and the Galerkin Method
,”
SPE Reservoir Eval. Eng.
,
6
(
2
), pp.
117
126
.
44.
Gale
,
J. F.
,
Laubach
,
S. E.
, and
Olson
,
J. E.
,
2014
, “
Natural Fractures in Shale: A Review and New Observations
,”
AAPG Bull.
,
98
(
11
), pp.
2165
2216
.
45.
Heinemann
,
Z. E.
,
Brand
,
C.
,
Munka
,
M.
, and
Chen
,
Y. M.
,
1989
, “
Modeling Reservoir Geometry With Irregular Grids
,”
SPE Reservoir Eng.
,
6
(
2
), pp.
225
232
.
46.
Lee
,
S. H.
,
Jensen
,
C. L.
, and
Lough
,
M. F.
,
2000
, “
Efficient Finite-Difference Model for Flow in a Reservoir With Multiple Length-Scale Fractures
,”
SPE J.
,
5
(
3
), pp.
268
275
.
47.
Li
,
L.
, and
Lee
,
S. H.
,
2008
, “
Efficient Field-Scale Simulation of Black Oil in a Naturally Fractured Reservoir Through Discrete Fracture Networks and Homogenized Media
,”
SPE Reservoir Eval. Eng.
,
11
(
4
), pp.
750
758
.
48.
Moinfar
,
A.
,
Varavei
,
A.
,
Sepehrnoori
,
K.
, and
Johns
,
R. T.
,
2014
, “
Development of an Efficient Embedded Discrete Fracture Model for 3D Compositional Reservoir Simulation in Fractured Reservoirs
,”
SPE J.
,
19
(
2
), pp.
289
303
.
49.
Xu
,
Y.
, and
Sepehrnoori
,
K.
,
2019
, “
Development of an Embedded Discrete Fracture Model for Field-Scale Reservoir Simulation With Complex Corner-Point Grids
,”
SPE J.
,
24
(
4
), pp.
1552
1575
.
50.
Li
,
Q.
,
Yong
,
R.
,
Wu
,
J.
, and
Miao
,
J.
,
2021
, “
An Integrated Assisted History Matching and Embedded Discrete Fracture Model Workflow for Well Spacing Optimization in Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
073004
.
51.
Jiang
,
J.
, and
Younis
,
R. M.
,
2016
, “
Hybrid Coupled Discrete-Fracture/Matrix and Multicontinuum Models for Unconventional-Reservoir Simulation
,”
SPE J.
,
21
(
3
), pp.
1009
1027
.
52.
Ţene
,
M.
,
Bosma
,
S. B. M.
,
Al Kobaisi
,
M. S.
, and
Hajibeygi
,
H.
,
2017
, “
Projection-Based Embedded Discrete Fracture Model (pEDFM)
,”
Adv. Water Resour.
,
105
, pp.
205
216
.
53.
Chai
,
Z.
,
Yan
,
B.
,
Killough
,
J. E.
, and
Wang
,
Y.
,
2018
, “
An Efficient Method for Fractured Shale Reservoir History Matching: The Embedded Discrete Fracture Multi-Continuum Approach
,”
J. Pet. Sci. Eng.
,
160
, pp.
170
181
.
54.
Chai
,
Z.
,
Tang
,
H.
,
He
,
Y.
,
Killough
,
J.
, and
Wang
,
Y.
,
2018
, “
Uncertainty Quantification of the Fracture Network With a Novel Fractured Reservoir Forward Model
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Sept. 24–26
, SPE-191395-MS.
You do not currently have access to this content.