Abstract

Missing financial and regulatory frameworks lead to low development and stagnating costs of concentrated solar thermal technology. Nevertheless, in locations with high direct normal irradiance (DNI) such as the Middle East and Northern Africa (MENA) region, the technology could become competitive, being promised a learning rate of 10–20%, and boost local economies. This study aims to identify potential business cases and evaluate the increased technology's investment likelihood in the region, focusing on Egypt. A thorough market assessment on the structure, regulatory framework, demand, and potential revenues was conducted for the power and process heating sector. A SWOT analysis was performed considering the local context and competing technologies. Egypt was shown to offer local manufacturing potential, regulatory framework, and renewable energy (RE) strategies, facilitating the technology's deployment. Moreover, the market is already open for private investment and selected international funds are directed toward CSP development. High initial technology cost, subsidized fuel and electricity prices for industry, alongside lack of long-term financial incentives and awareness of potential long-term benefits for the economy were identified as the most significant threats. High solar heat demand for industrial processes and large potential for concentrated solar heat (CSH) application were identified. Yet, the market is decentralized and the processes are very diverse, moreover retrofitting may pose risks alongside the high upfront investment and additional land costs, which makes concentrated solar heat applications less attractive for the Egyptian industrial sector. Hence, for concentrated solar technology deployment, financial incentives and a regulatory framework specifically directed toward the technology would be necessary.

References

1.
IEA
,
2020
, “
Renewable Energy Market Update Outlook for 2020 and 2021
,”
International Energy Agency
,
Paris
.
2.
van Sark
,
W.
, and
Corona
,
B.
,
2020
, “Concentrating Solar Power,”
Technological Learning in the Transition to a Low-Carbon Energy System
,
M.
Junginger
, and
A.
Louwen
, eds.,
Academic Press
,
London, UK
, pp.
221
231
.
3.
Köberle
,
A.
,
Gernaat
,
D.
, and
Van Vuurenac
,
D.
,
2015
, “
Assessing Current and Future Techno-Economic Potential of Concentrated Solar Power and Photovoltaic Electricity Generation
,”
Energy
,
89
, pp.
739
756
.
4.
Gauché
,
P.
,
Rudman
,
J.
,
Mabaso
,
M.
,
Landman
,
W. A.
,
Backström
,
T. W. v.
, and
Brent
,
A. C.
,
2017
, “
System Value and Progress of CSP
,”
Sol. Energy
,
152
, pp.
106
139
.
5.
Fraunhofer ISE With Support of PSE GmbH
,
2020
,
Photovoltaics Report, Presentation 16 September 2020
.
6.
Kost
,
C.
,
Shammugam
,
S.
,
Jülch
,
V.
, and
Huyen-Tran Nguyen
,
T. S.
,
2018
, “
Levelized Cost of Electricity Renewable Energy Technologies
,”
Fraunhofer Institute For Solar Energy Systems ISE
,
Freiburg
.
7.
IEA
,
2020
, “
Concentrating Solar Power (CSP)
,”
International Energy Agency
. https://www.iea.org/reports/concentrating-solar-power-csp, Accessed February 27, 2021.
8.
IEA
,
2020
, “
Solar PV
,”
International Energy Agency
. https://www.iea.org/reports/solar-pv, Accessed February 19, 2021.
9.
San Miguel
,
G.
, and
Corona
,
B.
,
2018
, “
Economic Viability of Concentrated Solar Power Under Different Regulatory Frameworks in Spain
,”
Renewable Sustainable Energy Rev.
,
91
, pp.
205
218
.
10.
NREL
,
2018
, www.nrel.gov/csp/solarpaces/by_technology.cfm, Accessed July 10, 2018.
11.
Franchini
,
G.
,
Perdichizzi
,
A.
,
Ravelli
,
S.
, and
Barigozzi
,
G.
,
2013
, “
A Comparative Study Between Parabolic Trough and Solar Tower Technologies in Solar Rankine Cycle and Integrated Solar Combined Cycle Plants
,”
Sol. Energy
,
98
, pp.
302
314
.
12.
Heller
,
P.
,
2017
, “Introduction to CSP Systems and Performance,”
The Performance of Concentrated Solar Power (CSP) Systems Analysis, Measurement and Assessment
,
P.
Heller
, ed.,
Woodhead Publishing
,
Duxford, UK
, pp.
1
29
.
13.
Alguacil
,
M.
,
Prieto
,
C.
,
Rodriguez
,
A.
, and
Lohr
,
J.
,
2014
, “
Direct Steam Generation in Parabolic Trough Collectors
,”
Energy Procedia
,
49
, pp.
21
29
.
14.
Sepúlveda
,
F. J.
,
Miranda
,
M. T.
,
Montero
,
I.
,
Arranz
,
J. I.
,
Lozano
,
F. J.
,
Matamoros
,
M.
, and
Rodríguez
,
P.
,
2019
, “
Analysis of Potential Use of Linear Fresnel Collector for Direct Steam Generation in Industries of the Southwest of Europe
,”
Energies
,
12
(
21
), p.
4049
.
15.
Barone
,
G.
,
Buonomano
,
A.
,
Forzano
,
C.
, and
Palombo
,
A.
,
2019
, “Solar Thermal Collectors,”
Solar Hydrogen Production Processes, Systems and Technologies
,
F.
Calise
,
M.
D’Accadia
,
M.
Santarelli
,
A.
Lanzini
, and
D.
Ferrero
, eds.,
Academic Press
,
London, UK
, pp.
151
178
.
16.
Pitz-Paal
,
R.
,
2020
, “Concentrating Solar Power,”
Future Energy: Improved, Sustainable and Clean Options for Our Planet
,
T.
Letcher
, ed.,
Elsevier Ltd.
,
Amsterdam, The Netherlands
, pp.
413
430
.
17.
FRENELL GmbH
,
2016
, “
White Paper
.” https://www.frenell.de/, Accessed May 23, 2018.
18.
IEA
,
2019
, “
Is Concentrating Solar Power Forecast to Contribute to Global Energy Storage Over the Next Five Years? Analysis From Renewables 2018
,”
International Energy Agency
. https://www.iea.org/articles/is-concentrating-solar-power-forecast-to-contribute-to-global-energy-storage-over-the-next-five-years, Accessed February 15, 2021.
19.
Srivastva
,
U.
,
Malhotra
,
R.
, and
Kaushik
,
S.
,
2015
, “
Recent Developments in Heat Transfer Fluids Used for Solar Thermal Energy Applications and Applications
,”
J. Fundam. Renewable Energy Appl.
,
5
(
6
), pp.
1
11
.
20.
Ho
,
C. K.
, and
Iverson
,
B. D.
,
2014
, “
Review of High-Temperature Central Receiver Designs for Concentrating Solar Power
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
835
846
.
21.
Karellas
,
S.
, and
Roumpedakis
,
T. C.
,
2019
, “Solar Thermal Power Plants,”
Solar Hydrogen Production Processes, Systems and Technologies
,
F.
Calise
,
M.
D’Accadia
,
M.
Santarelli
,
A.
Lanzini
, and
D.
Ferrero
, eds.,
Academic Press
,
London, UK
, pp.
179
235
.
22.
Moreno-Gamboa
,
F.
, and
Nieto-Londoño
,
C.
,
2021
, “
Hybrid Brayton Multi-Stage Concentrated Solar Power Plant Energy and Exergy Performance Study
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
062108
.
23.
Sharan
,
P.
,
Kitz
,
K.
,
Wendt
,
D.
,
McTigue
,
J.
, and
Zhu
,
G.
,
2021
, “
Using Concentrating Solar Power to Create a Geological Thermal Energy Reservoir for Seasonal Storage and Flexible Power Plant Operation
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
010906
.
24.
Samadi
,
S.
,
2018
, “
The Experience Curve Theory and its Application in the Field of Electricity Generation Technologies
,”
Renewable Sustainable Energy Rev.
,
82
(
Part 3
), pp.
2346
2364
.
25.
IRENA
,
2016
, “
Renewable Power Generation Costs in 2017
,”
International Renewable Energy Agency
,
Abu Dhabi
.
26.
IRENA
,
2019
, “
Renewable Power Generation Costs in 2018
,”
International Renewable Energy Agency
,
Abu Dhabi
.
27.
Feldman
,
D.
,
Margolis
,
R.
,
Denholm
,
P.
, and
Stekli
,
J.
,
2016
, “
Exploring the Potential Competitiveness of Utility-Scale Photovoltaics Plus Batteries With Concentrating Solar Power, 2015–2030
,”
NREL
,
Golden
.
28.
del Río
,
P.
,
Peñasco
,
C.
, and
Mir-Artigues
,
P.
,
2018
, “
An Overview of Drivers and Barriers to Concentrated Solar Power in the European Union
,”
Renewable Sustainable Energy Rev.
,
81
(
Part 1
), pp.
1019
1029
.
29.
World Bank
,
2021
, “
Concentrating Solar Power: Clean Power on Demand 24/7
,”
World Bank
,
Washington, DC
.
30.
E.
Menichetti
,
A.
El Gharras
,
B.
Duhamel
and
S.
Karbuz
,
2018
, “
The MENA Region in the Global Energy Markets
,”
MENARA (Middle East and North Africa Regional Architecture)
.
31.
SOLARGIS
,
2020
, “
Solar Resource Maps of Middle East and North Africa
,” https://solargis.com/maps-and-gis-data/download/middle-east-and-north-africa, Accessed February 19, 2021.
32.
Benitez
,
D.
,
Kazantzidis
,
A.
,
Al-Salaymeh
,
A.
,
Bouaichaoui
,
S.
,
Ali
,
A. B. H.
,
Balghouthi
,
M.
, and
Guizani
,
A. A.
,
2019
, “
IEEE Study About Hybrid CSP–PV Plants
,”
The 10th International Renewable Energy Congress (IREC 2019)
,
Sousse, Tunisia
,
Mar. 26–28
.
33.
World Bank
,
2012
, “
Competitiveness Assessment of MENA Countries to Develop a Local Solar Industry
,”
Written for the World Bank by Accenture and STA (Solar Technology Advisors)
,
Washington, DC
.
34.
World Bank
,
2015
, “
Competitiveness Assessment of MENA Countries to Develop a Local Solar Industry (English) MENA Energy Series
,”
World Bank Group
,
Washington, DC
.
35.
HELIOCSP
,
2018
, “
Egypt’s Concentrated Solar Power Potential
,” http://helioscsp.com/. http://helioscsp.com/egypts-concentrated-solar-power-potential/, Accessed February 12, 2021.
36.
IRENA: International Renewable Energy Agency
,
2018
,
Abu Dhabi, United Arab Emirates, Renewable Energy Outlook Egypt
.
37.
World Bank
,
2012
, “
Implementation Completion and Results Report for Kureimat Solar Thermal Hybrid Project
,”
World Bank
.
38.
World Bank
,
2013
, “
Implementation Completion and Results Report for the Kingdom of Morocco Integrated Solar Combined Cycle
,”
World Bank
.
39.
EEHC: Egyptian Electricity Holding Company
,
2018/2019
,
Annual Report, Cairo Egypt
.
40.
M.
El-Said
,
2018
, “
Egypt Progresses Towards Benefiting From Renewable Energy
,”
Daily News Egypt
. https://dailynewsegypt.com/2018/09/06/egypt-progresses-towards-benefiting-from-renewable-energy/, Accessed June 6, 2021.
41.
IRENA: International Renewable Energy Agency
,
2018
,
Abu Dhabi, United Arab Emirates, Renewable Energy Outlook
.
42.
EEHC: Egyptian Electricity Holding Company
,
2017/18
,
Annual Report, Cairo, Egypt
.
43.
NREA: New and Renewable Energy Authority
,
2018
,
Annual Report, Cairo, Egypt
.
44.
Energy & Utilities
,
2020
, “
Egypt Cancels Tender for 100MW CSP Solar Project
.” https://energy-utilities.com/egypt-cancels-tender-for-100mw-csp-solar-project-news084371.html#, Accessed February 24, 2021.
45.
Zhai
,
R.
,
Liu
,
H.
,
Chen
,
Y.
,
Wu
,
H.
, and
Yang
,
Y.
,
2017
, “
The Daily and Annual Technical-Economic Analysis of the Thermal Storage PV-CSP System in Two Dispatch Strategies
,”
Energy Convers. Manage.
,
154
, pp.
56
67
.
46.
Larchet
,
K.
,
2015
,
Master Thesis, KTH School of Industrial Engineering and Management, Solar PV-CSP Hybridisation for Baseload Generation A Techno-Economic Analysis for the Chilean Market
.
47.
Gedle
,
Y.
,
Schmitz
,
M.
,
Gielen
,
H.
,
Schmitz
,
P.
,
Herrmann
,
U.
,
Boura
,
C. T.
,
Mahdi
,
Z.
,
Caminos
,
R. A. C.
, and
Dersch
,
J.
,
2020
, “
Analysis of an Integrated CSP-PV Hybrid Power Plant
,”
26th Edition of SolarPACES Conference.
48.
SolarPACES
,
2019
, “
Morocco Breaks New Record With 800 MW Midelt 1 CSP-PV at 7 Cents
,”
Solar Power & Chemical Energy Systems
, https://www.solarpaces.org/morocco-breaks-new-record-with-800-mw-midelt-1-csp-pv-at-7-cents/, Accessed February 16, 2021.
49.
Farjana
,
S. H.
,
Huda
,
N.
,
Mahmud
,
M.
, and
Saidur
,
R.
,
2017
, “
Solar Process Heat in Industrial Systems—A Global Review
,”
Renewable and Sustainable Energy Reviews.
,
82
(
Part 3
), pp.
2270
2286
.
50.
Jia
,
T.
,
Huang
,
J.
,
Li
,
R.
,
He
,
P.
, and
Dai
,
Y.
,
2018
, “
Status and Prospect of Solar Heat for Industrial Processes in China
,”
Renewable Sustainable Energy Rev.
,
90
, pp.
475
489
.
51.
IEA
,
2019
, “
Renewables 2019 Market Analysis and Forecast From 2019 to 2024
,”
International Energy Agency
. https://www.iea.org/reports/renewables-2019/heat, Accessed February 15, 2021.
52.
Sandri
,
S.
,
Hussein
,
H.
, and
Alshyab
,
N.
,
2020
, “
Sustainability of the Energy Sector in Jordan: Challenges and Opportunities
,”
Sustainability
,
12
(
24
), pp.
1
25
.
53.
Berger
,
M.
,
Meyer-Grünefeldt
,
M.
,
Krüger
,
D.
,
Hennecke
,
K.
,
Mokhtar
,
M.
, and
Zahler
,
C.
,
2016
, “
First Year of Operational Experience With a Solar Process Steam System for a Pharmaceutical Company in Jordan
,”
Energy Procedia
,
91
, pp.
591
600
.
54.
2018
, “
Solar Steam for Process Heat and Air Conditioning
,” solarthermalworld.org. https://www.solarthermalworld.org/news/solar-steam-process-heat-and-air-conditioning, Accessed February 15, 2021.
55.
JTI
,
2017
, “
A Leading Light: Bringing Solar Steam to JTI Jordan
,”
Japanese Tobacco International
, https://www.jti.com/news-views/solar-steam, Accessed February 15, 2021.
56.
World Bank Group and Fraunhofer ISE
,
2021
, “
1st Concentrating Solar Heat (CSH) Workshop, The big picture: competitiveness and investment perception for CSH
,” https://cmimarseille.org/menacspkip/wp-content/uploads/2018/09/1.-Cuadros-Horta.Competitiveness-and-investment-perception-for-CSH.pdf, Accessed February 20, 2021.
57.
International Energy Agency (IEA)
,
2018
, “
The Future of Cooling
.” https://www.iea.org/reports/the-future-of-cooling, Accessed February 24, 2021.
58.
IEA
,
2020
, “
Cooling
,”
International Energy Agency
. https://www.iea.org/reports/cooling, Accessed February 24, 2021.
59.
Alazazmeh
,
A.
,
Mokheimer
,
E.
,
Khaliq
,
A.
, and
Quresh
,
B.
,
2019
, “
Performance Analysis of a Solar-Powered Multi-Effect Refrigeration System
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072001
.
60.
Ali
,
B.
,
Ghadi
,
Y.
,
Rasul
,
M.
, and
Khan
,
M.
,
2013
, “
An Overview of Solar Assisted Air Conditioning in Queensland's Subtropical Regions, Australia
,”
Renewable Sustainable Energy Rev.
,
26
, pp.
781
804
.
61.
International Energy Agency—Energy Technology Systems Analysis Programme (IEA-ETSAP) and International Renewable Energy Agency (IRENA)
, “
Solar Heating and Cooling for Residential Applications Technology Brief
,”
2015
.
62.
Mokheimer
,
E.
, and
Dabwan
,
Y.
,
2019
, “
Performance Analysis of Integrated Solar Tower With a Conventional Heat and Power Co-Generation Plant
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
021201
.
63.
EcoMENA
,
2020
, “
Combating Desertification in MENA
,” https://www.ecomena.org/desertification-mena/, Accessed February 16, 2021.
64.
Mohammadi
,
K.
,
Saghafifar
,
M.
,
Ellingwood
,
K.
, and
Powell
,
K.
,
2019
, “
Hybrid Concentrated Solar Power (CSP)-Desalination Systems: A Review
,”
Desalination
,
468
, pp.
1
34
.
65.
Jones
,
E.
,
Qadir
,
M.
,
van Vliet
,
M. T.
,
Smakhtin
,
V.
, and
Kang
,
S.-m.
,
2019
, “
The State of Desalination and Brine Production: A Global Outlook
,”
Sci. Total Environ.
,
657
, pp.
1343
1356
.
66.
Abd Ellah
,
R. G.
,
2020
, “
Water Resources in Egypt and Their Challenges, Lake Nasser Case Study
,”
Egyptian Journal of Aquatic Research
,
46
(
1
), pp.
1
12
.
67.
Enterprise
,
2020
, “
Egypt to Invest More Than EGP 45 bn to Build 47 Seawater Desalination Plants Before 2025
,”
Enterprise the State of the Nation
, https://enterprise.press/stories/2020/07/14/egypt-to-invest-more-than-egp-45-bn-to-build-47-seawater-desalination-plants-before-2025-18867, Accessed February 18, 2021.
68.
Pugsley
,
A.
,
Zacharopoulos
,
A.
,
Mondol
,
J. D.
, and
Smyth
,
M.
,
2016
, “
Global Applicability of Solar Desalination
,”
Renewable Energy
,
88
, pp.
200
219
.
69.
Sharaf
,
M.
,
Nafey
,
A.
, and
García-Rodríguez
,
L.
,
2011
, “
Thermo-Economic Analysis of Solar Thermal Power Cycles Assisted MED-VC (Multi Effect Distillation-Vapor Compression) Desalination Processes
,”
Energy
,
36
(
5
), pp.
2753
2764
.
70.
Sharaf
,
M.
,
2012
, “
Thermo-Economic Comparisons of Different Types of Solar Desalination Processes
,”
ASME J. Sol. Energy Eng.
,
134
(
3
), p.
031001
.
71.
Hassabou
,
A. H.
,
Spinnler
,
M.
, and
Polifke
,
W.
,
2013
, “
Technoeconomic Analysis of Medium and Large-Sacle Desalination Plants Driven by Concentrated Solar Systems in the Mena Region
,”
Energy Procedia
,
42
, pp.
735
744
.
72.
Wellmann
,
J.
,
Meyer-Kahlen
,
B.
, and
Morosuk
,
T.
,
2018
, “
Exergoeconomic Evaluation of a CSP Plant in Combination With a Desalination Unit
,”
Renewable Energy
,
128
(
Part B
), pp.
586
602
.
73.
Kouta
,
A. K.
,
Al-Sulaiman
,
F. A.
, and
Atif
,
M.
,
2017
, “
Energy Analysis of a Solar Driven Cogeneration System Using Supercritical CO2 Power Cycle and MEE-TVC Desalination System
,”
Energy
,
119
, pp.
996
1009
.
74.
Hamed
,
O. A.
,
Kosaka
,
H.
,
Bamardouf
,
K. H.
,
Al-Shail
,
K.
, and
Al-Ghamdi
,
A. S.
,
2016
, “
Concentrating Solar Power for Seawater Thermal Desalination
,”
Desalination
,
396
, pp.
70
78
.
75.
Laissaoui
,
M.
,
Touil
,
A.
, and
Nehari
,
D.
,
2017
, “
Thermodynamic Analysis of the Combined CSP and Desalination in Algeria
,”
Energy Procedia
,
139
, pp.
79
85
.
76.
Darwish
,
M. A.
, and
Darwish
,
A.
,
2014
, “
Solar Cogeneration Power-Desalting Plant With Assisted Fuel
,”
Desalin. Water Treat.
,
52
(
1–3
), pp.
9
26
.
77.
German Aerospace Center (DLR)
,
2006
, “
TRANS-CSP: Trans-Mediterranean Interconnection for Concentrating Solar Power
,”
Stuttgart, Germany
.
78.
German Aerospace Center (DLR)
,
2007
, “
Aqua-CSP Study Report, Concentrating Solar Power for Seawater Desalination
,”
Stuttgart, Germany
.
79.
Moser
,
M.
,
Trieb
,
F.
,
Kern
,
J.
,
Allal
,
H.
,
Cottret
,
N.
,
Scharfe
,
J.
,
Tomasek
,
M.-L.
, and
Savoldi
,
E.
,
2011
, “
The MED-CSD Project: Potential for Concentrating Solar Power Desalination Development in Mediterranean Countries
,”
ASME J. Sol. Energy Eng.
,
133
(
3
), p.
031012
.
80.
MATS
,
2018
, “
MATS Project (Multipurpose Applications by Thermodynamic Solar)
,”
ENEA
. http://www.mats.enea.it/, Accessed February 16, 2021.
81.
CSP Focus
,
2018
, “
Egypt’s Concentrated Solar Power Plant to Train African Scientists
,” http://www.cspfocus.cn/en/market/detail_786.htm, Accessed February 16, 2021.
82.
Acar
,
C.
, and
Dincer
,
I.
,
2018
, “Hydrogen Production,”
Comprehensive Energy Systems
,
I.
Dincer
,
İ.
Yıldız
,
C.
Acar
,
A.
Midilli
,
H.
Küçük
, and
T.
Ratlamwala
, eds.,
Elsevier Inc.
,
Amsterdam, The Netherlands
, pp.
1
40
.
83.
Villafán-Vidales
,
H. I.
,
Arancibia-Bulnes
,
C. A.
,
Valades-Pelayo
,
P. J.
,
Romero-Paredes
,
H.
,
Cuentas-Gallegos
,
A. K.
, and
Arreola-Ramos
,
C. E.
,
2019
, “Hydrogen from Solar Thermal Energy,”
Solar Hydrogen Production: Processes, Systems and Technologies
,
F.
Calise
,
M.
D’Accadia
,
M.
Santarelli
,
A.
Lanzini
, and
D.
Ferrero
, eds.,
Elsevier Inc., Academic Press
,
London, UK
, pp.
319
363
.
84.
Hoffmann
,
J. E.
,
2019
, “
On the Outlook for Solar Thermal Hydrogen Production in South Africa
,”
Int. J. Hydrogen Energy
,
44
(
2
), pp.
629
640
.
85.
Carrillo
,
R. J.
, and
Scheffe
,
J. R.
,
2017
, “
Advances and Trends in Redox Materials for Solar Thermochemical Fuel Production
,”
Sol. Energy
,
156
, pp.
3
20
.
86.
Vagliasindi
,
M.
, and
Besant-Jones
,
J.
,
2013
, “
Power Market Structure—Revising Policy Options
,”
The World Bank
,
Washington, DC
.
87.
Meier
,
P.
,
Vagliasindi
,
M.
, and
Imran
,
M.
,
2015
, “
The Design and Sustainability of Renewable Energy Incentives—An Economic Analysis
,”
International Bank for Reconstruction and Development/The World Bank
,
Washington, DC 20433
.
88.
Åberg
,
E.
,
Myrsalieva
,
N.
, and
Emtairah
,
T.
,
2015
, “Power Market Structure and Renewable Energy Deployment Experiences From the MENA Region,”
Regulation and Investments in Energy Markets
,
A.
Rubino
,
I.
Ozturk
,
V.
Lenzi
, and
M. T.
Campi
, eds.,
Academic Press
,
London, United Kingdom
, pp.
199
215
.
89.
S.
Wormser
,
2016
, “
Egypt’s Energy Sector Under Reform
,”
EBRD
,
London
.
90.
El-Mazghouny
,
D.
Interviewee,
Renewable Energy in Egypt
. April 3, 2019.
91.
Regional Center for Renewable Energy and Energy Efficiency
,
2016
, “
Egyptian Solar PV Feed-in-Tariff Procedures for Small Scale Projects: A Guideline for Investors
,”
Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH
,
Cairo
.
92.
NREA
,
2021
, “
Introduction to New & Renewable Energy Authority (NREA)
,”
New & Renewable Energy Authority
, http://nrea.gov.eg/test/en/About/Intro, Accessed February 17, 2021.
93.
Magdi
,
N.
,
2019
, “
EgyptERA: How Did Egypt Regulate Its Electricity Market?
,” Egypt Today, 18 September 2019. https://www.egypttoday.com/Article/3/74910/EgyptERA-How-did-Egypt-regulate-its-electricity-market, Accessed February 16, 2020.
94.
EEHC: Egyptian Electricity Holding Company
,
2017/2018
,
Annual Report, Cairo, Egypt
.
95.
Salah
,
F.
, and
Elkady
,
H.
,
2016
, “
Electricity and Renewable Energy Regulations in Egypt
,”
Riad & Riad Law Firm
,
Giza
.
96.
HSBC Bank Egypt S.A.E.
,
2018
, “
Sector Snapshot: Opportunities in Egypt’s Energy Sector
.” https://www.business.hsbc.com.eg/en-gb/eg/article/sector-snapshot-opportunities-in-egypt-energy-sector
97.
OECD
,
2013
,
Competitiveness and Private Sector Development Renewable Energies in the Middle East and North Africa Policies to Support Private Investment
,
OECD Publishing
,
Paris
.
98.
Cottret
,
N.
, and
Menichetti
,
E.
,
2013
,
Technical Study Report on Solar Heat for Industrial Processes (SHIP) State of the Art in the Mediterranean Region
,
Observatoire Méditerranéen de l’Energie
,
Paris
.
99.
Mohsen
,
A.
2003
,
Solar Opportunities for Egypt El Nasr Pilot Steam Plant
,
Cairo, Egypt
.
100.
Abdel-Dayema
,
A. M.
,
2011
, “
Numerical-Simulation and Experimental-Validation of the Largest Egyptian Solar Process-Heat System
,”
J. Renewable Sustainable Energy
,
3
(
4
), p.
043102
.
101.
Mohamed
,
A.
,
Mohsen
,
A.
, and
Kaddah
,
K.
,
2007
, “
Productivity Assessment of El-Nasr Pilot Solar Steam Generation Plant During Commissioning Phase
,”
Second Ain Shams University International Conference on Environmental Engineering
,
Cairo, Egypt
.
102.
GEF
,
2013
, “
Request for CEO Endorsement
,”
Global Environment Facility
.
103.
German Energy Agency (dena)
,
2016
, “
Process Heat in Industry and Commerce Technology Solutions for Waste Heat Utilisation and Renewable Provision
,”
German Energy Agency
,
Berlin, Germany
.
104.
RCREEE (Regional Center for Renewable Enegry and Energy Efficiency)
,
2015
, “
Arab Future Energy Index
,”
RCREEE
,
Cairo, Egypt
.
105.
EgyptERA
, “
Egyptera.org
,”
The Egyptian Electric Utility and Consumer Protection Regulatory Agency
,
2020
. http://egyptera.org/ar/Download/pdf/TariffPresentation2019_2020.PDF, Accessed February 19, 2021.
106.
AFRICAN ENERGY
,
2020
, “
Egypt Power Report – 2020
,”
2019 Cross-Border Information
,
United Kingdom
.
107.
S&P Global
,
2020
, “
Middle East Nuclear Ambitions Stymied by Financial Constraints, Enrichment Fears
,” https://www.spglobal.com/platts/en/market-insights/latest-news/electric-power/111120-middle-east-nuclear-ambitions-stymied-by-financial-constraints-enrichment-fears, Accessed February 24, 2021.
108.
MESIA: Middle East Solar Industry Association
,
2020
,
Dubai, UAE, Solar Outlook Report 2020
.
109.
Renewables Now
,
2020
, “
MENA With 42 GW of Solar Under Construction in 2019
,” https://renewablesnow.com/news/, Accessed February 17, 2020.
110.
Ras Ghareb Wind Energy
,
2020
, “
262.5 Ras Ghareb Wind Farm
,” http://rgwe.co, Accessed February 17, 2021.
111.
United Nations
,
2018
, “
Gabel El Zeit Wind Farm Complex
.” https://sustainabledevelopment.un.org/, Accessed February 16, 2020.
112.
NREA: New & Renewable Energy Authority
,
2021
, http://www.nrea.gov.eg/Content/reports/jan2021En.jpeg, Accessed February 27, 2021.
113.
Renewable Energy World
,
2020
, “
Egypt Scraps West Nile Solar Tender as New PV Assembly Line is Launched
,” https://www.renewableenergyworld.com/solar/egypt-scraps-west-nile-solar-tender-as-new-pv-assembly-line-is-launched/#gref, Accessed February 22, 2021.
114.
Enterprise,
2019
, “
Cabinet Signs Off on Egypt’s Waste-to-Energy tariff at EGP 1.40/kWh
,”
Enterprise the State of the Nation
. https://enterprise.press/stories/2019/10/24/cabinet-signs-off-on-egypts-waste-to-energy-tariff-at-egp-1-40-kwh/, Accessed February 18, 2021.
115.
United Nations Industrial Development (UNIDO)
,
Ministry of Industry, Trade & SMEs (MITS)
, and
New and Renewable Energy Authority (NREA)
,
2014
,
Project Document: Utilizing Solar Energy for Industrial Process Heat in Egyptian Industry
.
116.
Serverta
,
J.
, and
Cerrajerob
,
E.
,
2015
, “
Assessment on Egypt’s CSP Components Manufacturing Potential
,”
Energy Procedia
,
69
, pp.
1498
1507
.
117.
IRENA
,
2015
, “
Solar Heat for Industrial Processes
,”
IEA-ETSAP and IRENA
.
You do not currently have access to this content.