Abstract

Due to the current trends aiming to reduce carbon dioxide emissions by increasing the use of renewable energy sources, changes are required in the operation of coal-fired steam units. The unstable nature of renewable energy sources, depending on weather conditions, means that the amount of energy produced varies and is not always in line with peak demand. To ensure the security and stability of energy supplies in the energy system, renewable sources should cooperate with units independent of environmental conditions. With conventional steam systems, the main issue of such energy storage applied to steam turbine units is presented in this article, which, in the event of a need for a sudden reduction of the system load, prevents overloading of the boiler and turbines, improving the safety of the system. This article presents a thermodynamic model of this energy storage. A zero-dimensional (0D) model was implemented, including the operating parameters of the unit. This model directly relates to the thermodynamic parameters defined at specific points of the thermodynamic cycle. Based on the 0D model, it was shown that the process of loading the energy storage with steam leads to a load reduction of up to 4%. Conversely, when discharging the stored energy, the net power of the steam block may increase by 0.4%. For more detailed analysis, a three-dimensional (3D) nonequilibrium with including cross effects approach was applied. This approach is based on flow models, with phase transitions that determine temperature fields, densities, and phase transition in relevant space, and is used for more accurate analysis. Here, we investigate the relationship between the 0D and 3D approaches in the context of steam storage. The combination of these two approaches is the fundamental novelty of this article.

References

1.
Koytsoumpa
,
E. I.
,
Bergins
,
C.
,
Buddenberg
,
T.
,
Wu
,
S.
,
Sigurbjörnsson
,
Ó
,
Tran
,
K. C.
, and
Kakaras
,
E.
,
2016
, “
The Challenge of Energy Storage in Europe: Focus on Power to Fuel
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042002
.
2.
Saadat
,
M.
, and
Li
,
P. Y.
,
2012
, “
Modeling and Control of a Novel Compressed Air Energy Storage System for Offshore Wind Turbine
,”
2012 American Control Conference (ACC)
,
IEEE
, pp.
3032
3037
.
3.
Chedid
,
R.
,
Salameh
,
S.
,
Karaki
,
S.
,
Yehia
,
M.
, and
Al-Ali
,
R.
,
1999
, “
Optimization of Electrical Distribution Networks Fed by Conventional and Renewable Energy Sources
,”
Int. J. Energy Res.
,
23
, pp.
751
763
.
4.
Khaitan
,
S.
, and
Raju
,
M.
,
2011
, “
Dynamic Simulation of Air Storage-Based Gas Turbine Plants
,”
Int. J. Energy Res.
,
37
(
6
), pp.
558
569
.
5.
Mazloum
,
Y.
,
Sayah
,
H.
, and
Nemer
,
M.
,
2016
, “
Static and Dynamic Modeling Comparison of an Adiabatic Compressed Air Energy Storage System
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
062001
.
6.
Upendra Roy
,
B. P.
, and
Rengarajan
,
N.
,
2017
, “
Feasibility Study of an Energy Storage System for Distributed Generation System in Islanding Mode
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
011901
.
7.
Mollenhauer
,
E.
,
Christidis
,
A.
, and
Tsatsaronis
,
G.
,
2018
, “
Increasing the Flexibility of Combined Heat and Power Plants With Heat Pumps and Thermal Energy Storage
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020907
.
8.
Yokoyama
,
R.
, and
Ito
,
K.
,
1996
, “
A Revised Decomposition Method for MILP Problems and ITs Application to Operational Planning of Thermal Storage Systems
,”
ASME J. Energy Resour. Technol.
,
118
(
4
), pp.
277
284
.
9.
Koohi-Fayegh
,
S.
, and
Rosen
,
M. A.
,
2020
, “
A Review of Energy Storage Types, Applications and Recent Developments
,”
J. Energy Storage
,
27
, p.
101047
.
10.
Vadasz
,
P.
, and
Weiner
,
D.
,
1987
, “
An Evaluation Method for Peak/off-Peak Price Functions in Energy Storage Technologies
,”
ASME J. Energy Resour. Technol.
,
109
(
1
), pp.
21
25
.
11.
Chen
,
S.
,
Zhu
,
T.
, and
Zhang
,
H.
,
2019
, “
Study on Optimization of Pressure Ratio Distribution in Multistage Compressed Air Energy Storage System
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
061901
.
12.
Kushnir
,
R.
,
Ullmann
,
A.
, and
Dayan
,
A.
,
2012
, “
Thermodynamic Models for the Temperature and Pressure Variations Within Adiabatic Caverns of Compressed Air Energy Storage Plants
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
021901
.
13.
Pinelli
,
M.
, and
Piva
,
S.
,
2003
, “
Solid/Liquid Phase Change in Presence of Natural Convection: A Thermal Energy Storage Case Study
,”
ASME J. Energy Resour. Technol.
,
125
(
3
), pp.
190
198
.
14.
Richter
,
M.
,
Oeljeklaus
,
G.
, and
Görner
,
K.
,
2019
, “
Improving the Load Flexibility of Coal-Fired Power Plants by the Integration of a Thermal Energy Storage
,”
Appl. Energy
,
236
, pp.
607
621
.
15.
Badur
,
J.
,
Ziółkowski
,
P.
,
Zakrzewski
,
W.
,
Sławiński
,
D.
,
Kornet
,
S.
,
Kowalczyk
,
T.
,
Hernet
,
J.
,
Piotrowski
,
R.
,
Felincjancik
,
J.
, and
Ziółkowski
,
P. J.
,
2014
, “
An Advanced Thermal-FSI Approach to Flow Heating/Cooling
,”
J. Phys. Conf. Ser.
,
530
(
1
), p.
012039
.
16.
Ziółkowski
,
P.
,
Kowalczyk
,
T.
,
Kornet
,
S.
, and
Badur
,
J.
,
2017
, “
On Low-Grade Waste Heat Utilization From a Supercritical Steam Power Plant Using an ORC-Bottoming Cycle Coupled with Two Sources of Heat
,”
Energy Convers. Manage.
,
146
, pp.
158
173
.
17.
Ziółkowski
,
P.
, and
Badur
,
J.
,
2018
, “
A Theoretical, Numerical and Experimental Verification of the Reynolds Thermal Transpiration Law
,”
Int. J. Numer. Methods Heat Fluid Flow
,
28
(
1
), pp.
64
80
.
18.
Ziółkowski
,
P.
,
2019
, “
Porous Structures in Aspects of Transpirating Cooling of Oxycombustion Chamber Walls
,”
AIP Conference Proceedings
,
American Institute of Physics Inc.
, p.
020065
.
19.
Badur
,
J.
,
Kornet
,
S.
,
Sławiński
,
D.
, and
Ziółkowski
,
P.
,
2016
, “
Analysis of Unsteady Flow Forces Acting on the Thermowell in a Steam Turbine Control Stage
,”
J. Phys. Conf. Ser.
,
760
(
1
), p.
012001
.
20.
Butterweck
,
A.
, and
Głuch
,
J.
,
2014
, “
Neural Network Simulator’s Application to Reference Performance Determination of Turbine Blading in the Heat-Flow Diagnostics
,”
Adv. Intell. Syst. Comput.
,
230
, pp.
137
147
.
21.
Dominiczak
,
K.
,
Drosińska-Komor
,
M.
,
Rządkowski
,
R.
, and
Głuch
,
J.
,
2020
, “
Optimisation of Turbine Shaft Heating Process Under Steam Turbine Run-Up Conditions
,”
Arch. Thermodyn.
,
41
(
4
), pp.
255
268
.
22.
Banaszkiewicz
,
M.
,
2015
, “
Multilevel Approach to Lifetime Assessment of Steam Turbines
,”
Int. J. Fatigue
,
73
, pp.
39
47
.
23.
Ziółkowski
,
P.
, and
Badur
,
J.
,
2018
, “
On Navier Slip and Reynolds Transpiration Numbers
,”
Arch. Mech.
,
70
, pp.
269
300
.
24.
Kornet
,
S.
, and
Badur
,
J.
,
2017
, “
Numerical Analysis of the Oscillation Frequency of the Shock Wave and the Evaporation Level on the Mach Disc in the IMP PAN Nozzle
,”
Prog. Comput. Fluid Dyn.
,
17
(
6
), pp.
352
360
.
25.
Stevanovic
,
V. D.
,
Petrovic
,
M. M.
,
Milivojevic
,
S.
, and
Maslovaric
,
B.
,
2015
, “
Prediction and Control of Steam Accumulation
,”
Heat Transfer Eng.
,
36
(
5
), pp.
498
510
.
26.
Stevanovic
,
V. D.
,
Maslovaric
,
B.
, and
Prica
,
S.
,
2012
, “
Dynamics of Steam Accumulation
,”
Appl. Therm. Eng.
,
37
, pp.
73
79
.
27.
Ziółkowski
,
P. J.
,
Ochrymiuk
,
T.
, and
Eremeyev
,
V. A.
,
2019
, “
Adaptation of the Arbitrary Lagrange–Euler Approach to Fluid–Solid Interaction on an Example of High Velocity Flow Over Thin Platelet
,”
Continuum Mech. Thermodyn.
, pp.
1
14
.
28.
Badur
,
J.
,
Ziolkowski
,
P.
,
Kornet
,
S.
,
Stajnke
,
M.
,
Bryk
,
M.
,
Banas
,
K.
, and
Ziolkowski
,
P.
,
2017
, “
The Effort of the Steam Turbine Caused by a Flood Wave Load
,”
AIP Conference Proceedings
,
American Institute of Physics Inc.
, p.
020001
.
29.
Badur
,
J.
,
Bryk
,
M.
,
Ziolkowski
,
P.
,
Slawinski
,
D.
,
Ziolkowski
,
P.
,
Kornet
,
S.
, and
Stajnke
,
M.
,
2017
, “
On a Comparison of Huber-Mises-Hencky with Burzynski-Pecherski Equivalent Stresses for Glass Body During Nonstationary Thermal Load
,”
AIP Conference Proceedings
,
American Institute of Physics Inc.
, p.
020002
.
30.
Kwidzinski
,
R.
,
2021
, “
Condensation Heat and Mass Transfer in Steam–Water Injectors
,”
Int. J. Heat Mass Transfer
,
164
, p.
120582
.
31.
Qu
,
X. H.
,
Sui
,
H.
, and
Tian
,
M. C.
,
2016
, “
CFD Simulation of Steam-Air Jet Condensation
,”
Nucl. Eng. Des.
,
297
, pp.
44
53
.
32.
Dahikar
,
S. K.
,
Sathe
,
M. J.
, and
Joshi
,
J. B.
,
2010
, “
Investigation of Flow and Temperature Patterns in Direct Contact Condensation Using PIV, PLIF and CFD
,”
Chem. Eng. Sci.
,
65
(
16
), pp.
4606
4620
.
33.
Patel
,
G.
,
Tanskanen
,
V.
, and
Kyrki-Rajamäki
,
R.
,
2014
, “
Numerical Modelling of Low-Reynolds Number Direct Contact Condensation in a Suppression Pool Test Facility
,”
Ann. Nucl. Energy
,
71
, pp.
376
387
.
34.
Kowalczyk
,
T.
,
Badur
,
J.
, and
Bryk
,
M.
,
2019
, “
Energy and Exergy Analysis of Hydrogen Production Combined with Electric Energy Generation in a Nuclear Cogeneration Cycle
,”
Energy Convers. Manage.
,
198
, p.
111805
.
35.
Hyrzyński
,
R.
,
Ziółkowski
,
P.
,
Gotzman
,
S.
,
Kraszewski
,
B.
,
Ochrymiuk
,
T.
, and
Badur
,
J.
,
2021
, “
Comprehensive Thermodynamic Analysis of the CAES System Coupled with the Underground Thermal Energy Storage Taking Into Account Global, Central and Local Level of Energy Conversion
,”
Renewable Energy
,
169
, pp.
379
403
.
You do not currently have access to this content.