Abstract

This article addresses the application of artificial neural network (ANN) and genetic expression programming (GEP), the popular artificial intelligence, and machine learning methods to estimate the Savonius wind rotor’s performance based on different independent design variables. Savonius wind rotor is one of the competent members of the vertical-axis wind turbines (VAWTs) due to its advantageous qualities such as direction independency, design simplicity, ability to perform at low wind speeds, and potent standalone system. The available experimental data on Savonius wind rotor have been used to train the ANN and GEP using matlab r2020b and genexprotools 5.0 software, respectively. The input variables used in ANN and GEP architecture include newly proposed design shape factors, number of blades and stages, gap and overlap lengths, height and diameter of the rotor, freestream velocity, end plate diameter, and tip speed ratio besides the cross-sectional area of the wind tunnel test section. Based on this, the unknown governing function constituted by the aforementioned input variables is established using ANN and GEP to approximate/forecast the rotor performance as an output. The governing equation formulated by ANN is in the form of weights and biases, while GEP provides it in the form of traditional mathematical functions. The trained ANN and GEP are capable to estimate the rotor performance with R2 ≈ 0.97 and R2 ≈ 0.65, respectively, in correlation with the reported experimental rotor performance.

References

1.
Mackay
,
D.
,
2009
,
Sustainable Energy-Without the Hot Air
,
UIT Cambridge Ltd
,
Cambridge, UK
.
2.
Duffie
,
J. H.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
,
John Wiley & Sons, Inc
,
Hoboken, NJ
.
3.
Green
,
M. A.
,
1982
,
Solar Cells: Operating Principles, Technology and System Applications
,
Prentice Hall Publication
,
Hoboken, NJ
.
4.
Hand
,
B.
, and
Cashman
,
A.
,
2020
, “
A Review on the Historical Development of the Lift-Type Vertical Axis Wind Turbine: From Onshore to Offshore Floating Application
,”
Sustain. Energy Technol. Assess.
,
38
, p.
100646
.
5.
Watson
,
S.
,
Moro
,
A.
,
Reis
,
V.
,
Baniotopoulos
,
C.
,
Barth
,
S.
,
Bartoli
,
G.
,
Bauer
,
F.
,
Boelman
,
E.
,
Bosse
,
D.
,
Cherubini
,
A.
,
Croce
,
A.
,
Fagiano
,
L.
,
Fontana
,
M.
,
Gambier
,
A.
,
Gkoumas
,
K.
,
Golightly
,
C.
,
Latour
,
M. I.
,
Jamieson
,
P.
,
Kaldellis
,
J.
,
Macdonald
,
A.
,
Murphy
,
J.
,
Muskulus
,
M.
,
Petrini
,
F.
,
Pigolotti
,
L.
,
Rasmussen
,
F.
,
Schild
,
P.
,
Schmehl
,
R.
,
Stavridou
,
N.
,
Tande
,
J.
,
Taylor
,
N.
,
Telsnig
,
T.
, and
Wiser
,
R.
,
2019
, “
Future Emerging Technologies in the Wind Power Sector: A European Perspective
,”
Renew. Sustain. Energy Rev.
,
113
, p.
109270
.
6.
Manwell
,
J. F.
,
Mcgovan
,
J. G.
, and
Rogers
,
A. L.
,
2009
,
Wind Energy Explained: Theory, Design and Applcation
,
John Wiley & Sons Ltd
,
New York
.
7.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Four Decades of Research Into the Augmentation Techniques of Savonius Wind Turbine Rotor
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
050801
.
8.
Batista
,
N. C.
,
Melício
,
R.
,
Mendes
,
V. M. F.
,
Calderón
,
M.
, and
Ramiro
,
A.
,
2015
, “
On a Self-Start Darrieus Wind Turbine: Blade Design and Field Tests
,”
Renew. Sustain. Energy Rev.
,
52
, pp.
508
522
.
9.
Paraschivoiu
,
I.
,
2002
,
Wind Turbine Design: With Emphasis on Darrieus Concept
,
Polytechnic International Press
,
Montreal, QC, Canada
.
10.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Review of Experimental Investigations Into the Design, Performance and Optimization of the Savonius Rotor
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
227
(
4
), pp.
528
542
.
11.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Evolution and Progress in the Development of Savonius Wind Turbine Rotor Blade Profiles and Shapes
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
030801
.
12.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Examining the Aerodynamic Drag and Lift Characteristics of a Newly Developed Elliptical-Bladed Savonius Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051201
.
13.
Rathod
,
U. H.
,
Talukdar
,
P. K.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2019
, “
Effect of Capped Vents on Torque Distribution of a Semicircular-Bladed Savonius Wind Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
101201
.
14.
Jha
,
S. K.
,
Bilalovic
,
J.
,
Jha
,
A.
,
Patel
,
N.
, and
Zhang
,
H.
,
2017
, “
Renewable Energy: Present Research and Future Scope of Artificial Intelligence
,”
Renew. Sustain. Energy Rev.
,
77
, pp.
297
317
.
15.
Wang
,
H.
,
Lei
,
Z.
,
Zhang
,
X.
,
Zhou
,
B.
, and
Peng
,
J.
,
2019
, “
A Review of Deep Learning for Renewable Energy Forecasting
,”
Energy Convers. Manag.
,
198
, p.
111799
.
16.
Al-Yahyai
,
S.
,
Charabi
,
Y.
, and
Gastli
,
A.
,
2010
, “
Review of the Use of Numerical Weather Prediction (NWP) Models for Wind Energy Assessment
,”
Renew. Sustain. Energy Rev.
,
14
(
9
), pp.
3192
3198
.
17.
Carta
,
J. A.
,
Ramírez
,
P.
, and
Velázquez
,
S.
,
2009
, “
A Review of Wind Speed Probability Distributions Used in Wind Energy Analysis. Case Studies in the Canary Islands
,”
Renew. Sustain. Energy Rev.
,
13
(
5
), pp.
933
955
.
18.
Colak
,
I.
,
Sagiroglu
,
S.
, and
Yesilbudak
,
M.
,
2012
, “
Data Mining and Wind Power Prediction: A Literature Review
,”
Renew. Energy
,
46
, pp.
241
247
.
19.
Marugán
,
A. P.
,
Márquez
,
F. P. G.
,
Perez
,
J. M. P.
, and
Ruiz-Hernández
,
D.
,
2018
, “
A Survey of Artificial Neural Network in Wind Energy Systems
,”
Appl. Energy
,
228
, pp.
1822
1836
.
20.
Foley
,
A. M.
,
Leahy
,
P. G.
,
Marvuglia
,
A.
, and
McKeogh
,
E. J.
,
2012
, “
Current Methods and Advances in Forecasting of Wind Power Generation
,”
Renew. Energy
,
37
(
1
), pp.
1
8
.
21.
Wilamowski
,
B. M.
, and
Irwin
,
D. J.
,
2011
,
The Industrial Electronics Handbook-Intelligent Syastem
,
CRC Press, Taylor and Francis Group
,
Boca Raton, FL
.
22.
Basheer
,
I. A.
, and
Hajmeer
,
M.
,
2013
, “
Artificial Neural Networks: Fundamentals, Computing, Design, and Application
,”
Comput. Concr.
,
11
(
3
), pp.
237
252
.
23.
Bagheri
,
A.
,
Nazari
,
A.
, and
Sanjayan
,
J.
,
2019
, “
The Use of Machine Learning in Boron-Based Geopolymers : Function Approximation of Compressive Strength by ANN and GP
,”
Measurement
,
141
, pp.
241
249
.
24.
Mohammadi
,
F.
,
Bina
,
B.
,
Karimi
,
H.
,
Rahimi
,
S.
, and
Yavari
,
Z.
,
2020
, “
Modeling and Sensitivity Analysis of the Alkylphenols Removal via Moving Bed Biofilm Reactor Using Artificial Neural Networks: Comparison of Levenberg Marquardt and Particle Swarm Optimization Training Algorithms
,”
Biochem. Eng. J.
,
161
, p.
107685
.
25.
Liang
,
T.
,
Liu
,
X.
,
Fan
,
P.
,
Zhu
,
L.
,
Bi
,
Y.
, and
Zhang
,
Y.
,
2020
, “
Prediction of Long-Term Creep Life of 9Cr–1Mo–V–Nb Steel Using Artificial Neural Network
,”
Int. J. Press. Vessel. Pip.
,
179
, p.
104014
.
26.
Romański
,
L.
,
Bieniek
,
J.
,
Komarnicki
,
P.
,
Dębowski
,
M.
, and
Detyna
,
J.
,
2017
, “
Estimation of Operational Parameters of the Counter-Rotating Wind Turbine With Artificial Neural Networks
,”
Arch. Civ. Mech. Eng.
,
17
(
4
), pp.
1019
1028
.
27.
Mohammadi
,
M.
,
Lakestani
,
M.
, and
Mohamed
,
M. H.
,
2018
, “
Intelligent Parameter Optimization of Savonius Rotor Using Artificial Neural Network and Genetic Algorithm
,”
Energy
,
143
, pp.
56
68
.
28.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2009
, “
Experimental Investigations on Single Stage Modified Savonius Rotor
,”
Appl. Energy
,
86
(
7–8
), pp.
1064
1073
.
29.
Sargolzaei
,
J.
, and
Kianifar
,
A.
,
2009
, “
Modeling and Simulation of Wind Turbine Savonius Rotors Using Artificial Neural Networks for Estimation of the Power Ratio and Torque
,”
Simul. Model. Pract. Theory
,
17
(
7
), pp.
1290
1298
.
30.
Storti
,
B. A.
,
Dorella
,
J. J.
,
Roman
,
N. D.
,
Peralta
,
I.
, and
Albanesi
,
A. E.
,
2019
, “
Improving the Efficiency of a Savonius Wind Turbine by Designing a Set of Deflector Plates With a Metamodel-Based Optimization Approach
,”
Energy
,
186
, p.
115814
.
31.
Debnath
,
B. K.
, and
Das
,
R.
,
2010
, “
Prediction of Performance Coefficients of a Three-Bucket Savonius Rotor Using Artificial Neural Network
,”
J. Renew. Sustain. Energy
,
2
(
4
), pp.
1
11
.
32.
Zhong
,
J.
,
Feng
,
L.
, and
Ong
,
Y. S.
,
2017
, “
Gene Expression Programming: A Survey [Review Article]
,”
IEEE Comput. Intell. Mag.
,
12
(
3
), pp.
54
72
.
33.
Ozbek
,
A.
,
Unsal
,
M.
, and
Dikec
,
A.
,
2013
, “
Estimating Uniaxial Compressive Strength of Rocks Using Genetic Expression Programming
,”
J. Rock Mech. Geotech. Eng.
,
5
(
4
), pp.
325
329
.
34.
Li
,
K.
,
Chen
,
Y.
,
Li
,
W.
,
He
,
J.
, and
Xue
,
Y.
,
2018
, “
Improved Gene Expression Programming to Solve the Inverse Problem for Ordinary Differential Equations
,”
Swarm Evol. Comput.
,
38
, pp.
231
239
.
35.
Murad
,
Y. Z.
,
Hunifat
,
R.
, and
AL-Bodour
,
W.
,
2020
, “
Interior Reinforced Concrete Beam-to-Column Joints Subjected to Cyclic Loading: Shear Strength Prediction Using Gene Expression Programming
,”
Case Stud. Constr. Mater.
,
13
, p.
e00432
.
36.
Yassin
,
M. A.
,
Alazba
,
A. A.
, and
Mattar
,
M. A.
,
2016
, “
Artificial Neural Networks Versus Gene Expression Programming for Estimating Reference Evapotranspiration in Arid Climate
,”
Agric. Water Manag.
,
163
, pp.
110
124
.
37.
Martí
,
P.
,
Shiri
,
J.
,
Duran-Ros
,
M.
,
Arbat
,
G.
,
de Cartagena
,
F. R.
, and
Puig-Bargués
,
J.
,
2013
, “
Artificial Neural Networks vs. Gene Expression Programming for Estimating Outlet Dissolved Oxygen in Micro-Irrigation Sand Filters Fed With Effluents
,”
Comput. Electron. Agric.
,
99
, pp.
176
185
.
38.
Sadeghi
,
G.
,
Najafzadeh
,
M.
, and
Safarzadeh
,
H.
,
2020
, “
Utilizing Gene-Expression Programming in Modelling the Thermal Performance of Evacuated Tube Solar Collectors
,”
J. Energy Storage
,
30
, p.
101546
.
39.
Masters
,
T.
,
1993
,
Practical Neural Network Recipes in C++
,
Academic Press Inc
,
San Diego, CA
.
40.
Dhar
,
V. K.
,
Tickoo
,
A. K.
,
Koul
,
R.
, and
Dubey
,
B. P.
,
2010
, “
Comparative Performance of Some Popular Artificial Neural Network Algorithms On
,”
Indian Acad. Sci.
,
74
(
2
), pp.
307
324
.
41.
Fujisawa
,
N.
, and
Gotoh
,
F.
,
1994
, “
Experimental Study on the Aerodynamic Performance of a Savonius Rotor
,”
ASME J. Sol. Energy Eng.
,
116
(
3
), pp.
148
152
.
42.
Fujisawa
,
N.
,
1992
, “
On the Torque Mechanism of Savonius Rotors
,”
J. Wind Eng. Ind. Aerodyn.
,
40
(
3
), pp.
277
292
.
43.
Ross
,
I.
, and
Altman
,
A.
,
2011
, “
Wind Tunnel Blockage Corrections: Review and Application to Savonius Vertical-Axis Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
5
), pp.
523
538
.
44.
Pope
,
A.
, and
Harper
,
J. J.
,
Low Speed Wind Tunnel Testing
,
John Wiley & Sons Ltd.
,
New York
.
45.
McCulloch
,
W. S.
, and
Pitts
,
W. H.
,
1943
, “
A Logical Calculus of the Ideas Immanent in Nervous Activity
,”
Bull. Math. Biophys.
,
5
(
4
), pp.
115
133
.
46.
Rosenblatt
,
F.
,
1957
,
The Percepron—A Perceiving and Recognizing Automaton, Report No. 85-460-1, Cornell Aeronautical Laboratory, Buffalo, NY
.
47.
Haykin
,
S.
,
2009
,
Neural Networks and Learning Machines
,
Pearson Education Inc
,
Hoboken, NJ
.
48.
Trenn
,
S.
,
2008
, “
Multilayer Perceptrons: Approximation Order and Necessary Number of Hidden Units
,”
IEEE Trans. Neural Networks
,
19
(
5
), pp.
836
844
.
49.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1989
, “
Multilayer Feedforward Networks Are Universal Approximators
,”
Neural Networks
,
2
(
5
), pp.
359
356
.
50.
Holland
,
J. H.
,
1992
,
Adaptation in Natural and Artificial System
,
The MIT Press
,
Cambridge, MA
.
51.
Goldberg
,
D.
,
1988
,
Genetic Algorithms in Optimization, Search and Machine Learning
,
Addison Wesley Publishing Company
,
Inc., Reading, MA
.
52.
Ferreira
,
C.
,
2005
,
Gene Expression Programming Studies in Computational Intelligence
,
Springer, Verlag
,
Berlin, Germany
.
53.
Hayashi
,
T.
,
Li
,
Y.
, and
Hara
,
Y.
,
2005
, “
Wind Tunnel Tests on a Different Phase Three-Stage
,”
JSME Int. J. Ser. B
,
48
(
1
), pp.
9
16
.
54.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2008
, “
Experimental Investigations on Single Stage, Two Stage and Three Stage Conventional Savonius Rotor
,”
Int. J. Energy Res.
,
32
(
10
), pp.
877
895
.
55.
Khan
,
M. H.
,
1978
, “
Model and Prototype Performance Characteristics of Savonius Rotor Windmill
,”
Wind Eng.
,
2
(
2
), pp.
75
85
.
56.
Modi
,
V. J.
, and
Fernando
,
M. S. U. K.
,
1989
, “
On the Performance of the Savonius Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
111
(
1
), pp.
71
81
.
57.
Modi
,
V. J.
,
Roth
,
N. J.
, and
Fernando
,
M. S. U. K.
,
1984
, “
Optimum-Configuration Studies and Prototype Design of a Wind-Energy-Operated Irrigation System
,”
J. Wind Eng. Ind. Aerodyn.
,
16
(
1
), pp.
85
96
.
58.
Roy
,
S.
, and
Saha
,
U. K.
,
2015
, “
Wind Tunnel Experiments of a Newly Developed Two-Bladed Savonius-Style Wind Turbine
,”
Appl. Energy
,
137
, pp.
117
125
.
59.
Sheldahl
,
R. E.
,
Feltz
,
L. V.
, and
Blackwell
,
B. F.
,
1978
, “
Wind Tunnel Performance Data for Two- and Three-Bucket Savonius Rotors
,”
J. Energy
,
2
(
3
), pp.
160
164
.
60.
Ushiyama
,
I.
,
Nagai
,
H.
, and
Shinoda
,
J.
,
1986
, “
Experimentally Determining the Optimum Design Configuration Foe Savonius Rotors
,”
Bull. JSME
,
29
(
258
), pp.
85
266
.
61.
Sheela
,
K. G.
, and
Deepa
,
S. N.
,
2013
, “
Review on Methods to Fix Number of Hidden Neurons in Neural Networks
,”
Math. Probl. Eng.
,
2013
, p.
425740
.
62.
Li
,
J.
,
Chow
,
T. W. S.
, and
Ying-Lin
,
Y.
, “
The Estimation Theory and Optimization Algorithm for the Number of Hidden Units in the Higher-Order Feed Forward Neural Network
,”
Proceedings of ICNN’95—International Conference on Neural Networks
,
IEEE
,
Perth, WA, Australia
, pp.
1
5
.
63.
Hunter
,
D.
,
Yu
,
H.
,
Member
,
S.
,
Pukish
,
M. S.
,
Member
,
S.
,
Kolbusz
,
J.
, and
Wilamowski
,
B. M.
,
2012
, “
Selection of Proper Neural Network Sizes and Architectures—A Comparative Study
,”
IEEE Trans. Ind. Informatics
,
8
(
2
), pp.
228
240
.
64.
Shibata
,
K.
, and
Ikeda
,
Y.
,
2009
, “
Effect of Number of Hidden Neurons on Learning in Large-Scale Layered Neural Networks
,”
ICROS-SICE International Joint Conference 2009
,
IEEE, Fukuoka International Congress Center
,
Japan
, pp.
5008
5013
.
65.
Beale
,
M. H.
,
Hagan
,
M. T.
, and
Demuth
,
H. B.
,
2010
,
Neural Network Toolbox TM 7 User's Guide
,
The Mathworks, Inc.
,
Cambridge, MA
.
66.
Hagan
,
M. T.
, and
Menhaj
,
M. B.
,
1994
, “
Training Feedforward Networks With the Marquardt Algorithm,” IEEE Trans
,”
Neural Netw
,
5
(
6
), pp.
2
6
.
67.
Møller
,
M. F.
,
1993
, “
A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning
,”
Neural Netw
,
6
(
4
), pp.
525
533
.
68.
Levenberg
,
K.
,
1944
, “
A Method for the Solution of Certain Non-Linear Problems in Least Squares
,”
Q. Appl. Math.
,
2
(
2
), pp.
164
168
.
69.
Menon
,
A.
,
Mehrotra
,
K.
,
Mohan
,
C. K.
, and
Ranka
,
S.
,
1996
, “
Characterization of a Class of Sigmoid Functions With Applications to Neural Networks
,”
9
(
5
), pp.
819
835
.
70.
Bishop
,
C. M.
,
1998
, “
Neural Networks and Their Applications
,”
Rev. Sci. Instrum.
,
65
(
6
), pp.
1803
1830
.
71.
Rasamoelina
,
D. A.
,
Adjailia
,
F.
, and
Sincak
,
P.
,
2020
, “
A Review of Activation Function for Artificial Neural Network
,”
SAMI 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics
,
Herl’any, Slovakia A
,
Jan. 23–25
, pp.
281
286
.
72.
Motamarri
,
S.
, and
Boccelli
,
D. L.
,
2012
, “
Development of a Neural-Based Forecasting Tool to Classify Recreational Water Quality Using Fecal Indicator Organisms
,”
Water Res.
,
46
(
14
), pp.
4508
4520
.
73.
Mohamad
,
N.
,
Zaini
,
F.
,
Johari
,
A.
,
Yassin
,
I.
, and
Zabidi
,
A.
,
2010
, “
Comparison Between Levenberg-Marquardt and Scaled Conjugate Gradient Training Algorithms for Breast Cancer Diagnosis Using MLP
,”
6th International Colloquium on Signal Processing & Application (CSPA)
,
Malacca, Malasiya
,
May 21–23
.
74.
Matsumoto
,
M.
, and
Nishimura
,
T.
,
1998
, “
Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator
,”
ACM Trans. Model. Comput. Simul.
,
8
(
1
), pp.
3
30
.
75.
Deb
,
K.
, and
Agrawal
,
S.
,
2002
, “Unserstanding Interaction Among Genetic Algorithm Paramters,”
Foundation of Genetic Algorithm
, Vol.
5
,
W.
Banzhaf
, and
C.
Reeves
, eds.,
Morgan Kaufmann Publishers, Inc.
,
San Francisco, CA
, pp.
265
286
.
You do not currently have access to this content.