Abstract

In this article, different paths (direct, spiral, and curved) for water flow in a photovoltaic/thermal (PV/T) system are studied, and they are compared together. The intensity of radiation to the cell surface is taken 800 W/m2, and the fluid flow is considered to be laminar in the micro-channels. The PV cell absorbing radiation is of an aluminum type. The numerical solution of the three geometries is carried out using the finite volume method using ansys-fluent software. The pressure decomposition, momentum and energy discretization, and the solution of the pressure–velocity coupling are performed based on the standard method, the second-order upwind method, and the semi-implicit method for pressure-linked equations (SIMPLE) method, respectively. The convergence factor is considered to be respected and for continuity and energy equations. The results indicate that the cell surface temperature and the outlet fluid temperature decrease by increasing the Reynolds (Re) number. Moreover, electricity efficiency increases with the increased Reynolds number. The curved path has the highest electrical efficiency in comparison to other two paths. The decrease in fluid pressure of the curved path in Re = 600 is 4% and 1.3% higher than the direct and spiral paths, respectively.

References

1.
Hoseinzadeh
,
S.
,
2019
, “
Thermal Performance of Electrochromic Smart Window With Nanocomposite Structure Under Different Climates in Iran
,”
Micro Nanosyst.
,
11
(
2
), pp.
154
164
.
2.
Ahmadi
,
M. H.
,
Baghban
,
A.
,
Sadeghzadeh
,
M.
,
Zamen
,
M.
,
Mosavi
,
A.
,
Shamshirband
,
S.
,
Kumar
,
R.
, and
Mohammadi-Khanaposhtani
,
M.
,
2020
, “
Evaluation of Electrical Efficiency of Photovoltaic Thermal Solar Collector
,”
Eng. Appl. Comput. Fluid Mech.
,
14
(
1
), pp.
545
565
.
3.
Azad Gilani
,
H.
, and
Hoseinzadeh
,
S.
,
2021
, “
Techno-Economic Comparison of Compound Parabolic Collector and Flat Plate Collector in Solar Water Heating Systems in the Northern Hemisphere
,”
Appl. Therm. Eng.
,
190
, p.
116756
.
4.
Mokheimer
,
E. M.
,
Shakeel
,
M. R.
,
Sanusi
,
Y. S.
, and
Mahmoud
,
M.
,
2020
, “
Thermo-Economic Comparative Analysis of Solar-Assisted and Carbon Capture Integrated Conventional Cogeneration Plant of Power and Process Steam
,”
Int. J. Energy Res.
,
44
(
11
), pp.
8455
8479
.
5.
Mokheimer
,
E. M.
, and
Dabwan
,
Y. N.
,
2019
, “
Performance Analysis of Integrated Solar Tower With a Conventional Heat and Power Co-Generation Plant
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
021201
.
6.
Ghalambaz
,
M.
,
Sabour
,
M.
, and
Pop
,
I.
,
2016
, “
Free Convection in a Square Cavity Filled by a Porous Medium Saturated by a Nanofluid: Viscous Dissipation and Radiation Effects
,”
Eng. Sci. Technol.
,
19
(
3
), pp.
1244
1253
.
7.
Bayrak
,
F.
, and
Oztop
,
H. F.
,
2020
, “
Effects of Static and Dynamic Shading on Thermodynamic and Electrical Performance for Photovoltaic Panels
,”
Appl. Therm. Eng.
,
169
, p.
114900
.
8.
Sohani
,
A.
,
Hoseinzadeh
,
S.
, and
Berenjkar
,
K.
,
2021
, “
Experimental Analysis of Innovative Designs for Solar Still Desalination Technologies; an In-Depth Technical and Economic Assessment
,”
J. Energy Storage
,
33
, p.
101862
.
9.
Arslan
,
E.
,
Aktaş
,
M.
, and
Faruk Can
,
Ö
,
2020
, “
Experimental and Numerical Investigation of a Novel Photovoltaic Thermal (PV/T) Collector With the Energy and Exergy Analysis
,”
J. Cleaner Prod.
,
276
, p.
123255
.
10.
Teo
,
H.
,
Lee
,
P.
, and
Hawlader
,
M. J. A. E.
,
2012
, “
An Active Cooling System for Photovoltaic Modules
,”
Applied Energy
,
90
(
1
), pp.
309
315
.
11.
Sainthiya
,
H.
, and
Singh Beniwal
,
N.
,
2019
, “
Thermal Modeling and Performance Analysis of a Hybrid Photovoltaic/Thermal System Under Combined Surface Water Cooling in Winter Season: An Experimental Approach
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012102
.
12.
Sainthiya
,
H.
, and
Singh Beniwal
,
N.
,
2019
, “
Efficiency Enhancement of Photovoltaic/Thermal Module Using Front Surface Cooling Technique in Winter and Summer Seasons: An Experimental Investigation
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
091201
.
13.
Agrawal
,
S.
, and
Tiwari
,
G. N.
,
2015
, “
Performance Analysis in Terms of Carbon Credit Earned on Annualized Uniform Cost of Glazed Hybrid Photovoltaic Thermal air Collector
,”
Sol. Energy
,
115
, pp.
329
340
.
14.
Agrawal
,
S.
, and
Tiwari
,
A.
,
2011
, “
Experimental Validation of Glazed Hybrid Micro-Channel Solar Cell Thermal Tile
,”
Sol. Energy
,
85
(
11
), pp.
3046
3056
.
15.
Valadez-Villalobos
,
K.
,
Idígoras
,
J. S.
,
Delgado
,
L. P.
,
Meneses-Rodríguez
,
D.
,
Anta
,
J. A.
, and
Oskam
,
G.
,
2019
, “Correlation Between the Effectiveness of the Electron-Selective Contact and Photovoltaic Performance of Perovskite Solar Cells,”
J. Phys. Chem. Lett.
, 10(4), pp. 877–882.
16.
Meraj
,
M.
,
Khan
,
M. E.
, and
Azhar
,
M.
,
2020
, “
Performance Analyses of Photovoltaic Thermal Integrated Concentrator Collector Combined With Single Effect Absorption Cooling Cycle: Constant Flow Rate Mode
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
121305
.
17.
Coventry
,
J. S.
,
2005
, “
Performance of a Concentrating Photovoltaic/Thermal Solar Collector
,”
Sol. Energy
,
78
(
2
), pp.
211
222
.
18.
Coventry
,
J.
,
Franklin
,
E.
, and
Blakers
,
A.
,
2002
,
Thermal and Electrical Performance of a Concentrating PV/Thermal Collector: Results from the ANU CHAPS Collector
,
Environmental Science
.
19.
Fudholi
,
A.
,
Sopian
,
K.
,
Yazdi
,
M. H.
,
Ruslan
,
M. H.
,
Ibrahim
,
A.
, and
Kazem
,
H. A.
,
2014
, “
Performance Analysis of Photovoltaic Thermal (PVT) Water Collectors
,”
Energy Convers. Manage.
,
78
, pp.
641
651
.
20.
Fudholi
,
A.
,
Sopian
,
K.
,
Gabbasa
,
M.
,
Bakhtyar
,
B.
,
Yahya
,
M.
,
Ruslan
,
M. H.
, and
Mat
,
S.
,
2015
, “
Techno-Economic of Solar Drying Systems With Water Based Solar Collectors in Malaysia: A Review
,”
Renewable Sustainable Energy Rev.
,
51
, pp.
809
820
.
21.
Hissouf
,
M.
,
Feddaoui
,
M.
,
Najim
,
M.
, and
Charef
,
A.
,
2020
, “
Performance of a Photovoltaic-Thermal Solar Collector Using Two Types of Working Fluids at Different Fluid Channels Geometry
,”
Renewable Energy
,
162
, pp.
1723
1734
.
22.
Lee
,
P.-S.
, and
Garimella
,
S. V.
,
2006
, “
Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3060
3067
.
23.
Hoseinzadeh
,
S.
,
Sohani
,
A.
,
Samiezadeh
,
S.
,
Kariman
,
H.
, and
Ghasemi
,
M. H.
,
2020
, “
Using Computational fluid Dynamics for different Alternatives Water Flow Path in a Thermal Photovoltaic (PVT) System
,”
Int. J. Numer. Methods Heat Fluid Flow.
,
31
(
5
), pp.
1618
1637
.
24.
Jia
,
Y.
,
Ran
,
F.
,
Zhu
,
C.
, and
Fang
,
G.
,
2020
, “
Numerical Analysis of Photovoltaic-Thermal Collector Using Nanofluid as a Coolant
,”
Sol. Energy
,
196
, pp.
625
636
.
25.
Mahmoudan
,
A.
,
Samadof
,
P.
,
Hoseinzadeh
,
S.
, and
Astiaso Garcia
,
D.
,
2021
, “
A Multigeneration Cascade System Using Ground-Source Energy With Cold Recovery: 3E Analyses and Multi-Objective Optimization
,”
Energy.
,
233
, p.
121185
.
26.
Maleki
,
A.
,
Pourfayaz
,
F.
, and
Ahmadi
,
M. H.
,
2016
, “
Design of a Cost-Effective Wind/Photovoltaic/Hydrogen Energy System for Supplying a Desalination Unit by a Heuristic Approach
,”
Sol. Energy
,
139
, pp.
666
675
.
27.
Sohani
,
A.
, and
Sayyaadi
,
H.
,
2020
, “
End-Users’ and Policymakers’ Impacts on Optimal Characteristics of a Dew-Point Cooler
,”
Appl. Therm. Eng.
,
165
, p.
114575
.
28.
Li
,
J.
,
Peterson
,
G. P.
, and
Cheng
,
P.
,
2004
, “
Three-Dimensional Analysis of Heat Transfer in a Micro-Heat Sink With Single Phase Flow
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4215
4231
.
29.
Ho
,
C. J.
,
Chiou
,
Y.-H.
,
Yan
,
W.-M.
, and
Ghalambaz
,
M.
,
2019
, “
Transient Cooling Characteristics of Al2O3-Water Nanofluid Flow in a Microchannel Subject to a Sudden-Pulsed Heat Flux
,”
Int. J. Mech. Sci.
,
151
, pp.
95
105
.
30.
Ghalambaz
,
M.
,
Zadeh
,
S. M. H.
,
Mehryan
,
S. A. M.
,
Ayoubloo
,
K. A.
, and
Sedaghatizadeh
,
N.
,
2020
, “
Non-Newtonian Behavior of an Electrical and Magnetizable Phase Change Material in a Filled Enclosure in the Presence of a Non-Uniform Magnetic Field
,”
Int. Commun. Heat Mass Transfer
,
110
, p.
104437
.
31.
Jordaan
,
H.
,
Heyns
,
P. S.
, and
Hoseinzadeh
,
S.
,
2021
, “
Numerical Development of a Coupled 1D/3D CFD Method for Thermal Analysis With Flow Maldistribution
,”
J. Therm. Sci. Eng. Appl.
,
13
(
4
), p.
041017
.
32.
Dehghani-Sanij
,
A.
, and
Bahadori
,
M. N.
,
2021
, “Chapter 8—Using Various Hybrid Systems to Supply Thermal Energy Needs of Buildings,”
Ice-Houses, Energy, Architecture, and Sustainability
,
Academic Press
,
Cambridge, MA
, pp.
265
292
.
33.
Mokheimer
,
E.
,
Hamdy
,
M.
,
Abubakar
,
Z.
,
Shakeel
,
M. R.
,
Habib
,
M. A.
, and
Mahmoud
,
M.
,
2019
, “
A Comprehensive Review of Thermal Enhanced Oil Recovery: Techniques Evaluation
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
030801
.
34.
Ghalambaz
,
M.
,
Sheremet
,
M. A.
,
Mehryan
,
S. A. M.
,
Kashkooli
,
F. M.
, and
Pop
,
I.
,
2019
, “
Local Thermal Non-Equilibrium Analysis of Conjugate Free Convection Within a Porous Enclosure Occupied With Ag–MgO Hybrid Nanofluid
,”
J. Therm. Anal. Calorim.
,
135
(
2
), pp.
1381
1398
.
35.
Dehghani-Sanij
,
A.
, and
Nathwani
,
J.
,
2021
, “
Special Issue: New Trends in Enhanced
,”
HybridIntegr. Geotherm. System. Appl. Sci.
,
11
(
9
), p.
3765
.
36.
Pritchard
,
P. J.
, and
Mitchell
,
J. W.
,
2016
,
Fox and McDonald's Introduction to Fluid Mechanics
,
John Wiley & Sons
,
Hoboken, NJ
.
37.
Mokheimer
,
E. M.
,
2002
, “
Performance of Annular Fins With Different Profiles Subject to Variable Heat Transfer Coefficient
,”
Renewable Energy.
,
45
(
17
), pp.
3631
3642
.
38.
Baldwin
,
B.
, and
Lomax
,
H.
,
1978
, “
Thin-Layer Approximation and Algebraic Model for Separated Turbulentflows
,”
16th Aerospace Sciences Meeting
, p.
257
.
39.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education
,
UK
, p.
503
.
40.
Sohani
,
A.
, and
Sayyaadi
,
H.
,
2020
, “
Providing an Accurate Method for Obtaining the Efficiency of a Photovoltaic Solar Module
,”
Renewable Energy
,
156
, pp.
395
406
.
You do not currently have access to this content.