Abstract

In a chemical looping combustion (CLC) system, gasification kinetics of char holds immense importance being the rate-limiting reaction in the fuel reactor. This paper studied the gasification kinetics of char derived from Victorian brown coal (VBC) in a fluidized bed reactor which mimics the fuel reactor conditions of a chemical looping combustion process. Mass of char, char particle size, and gas flow conditions were optimized to ensure the gasification reaction free from mass transfer limitations. Effect of oxygen carrier (OC), hematite, being the bed material was also studied. The experiments were conducted in the temperature range of 800 °C–950 °C, which is a typical range for fuel reactor. The experimental results were modeled with the help of grain model (GM) and random pore model (RPM) to analyze the kinetic parameters. Activation energy was found to be around 177 kJ/mol in sand bed and 175.5 kJ/mol in the hematite bed. Reaction in hematite bed was found to be 42% faster on average compared with the reaction in a sand bed. Fastest total conversion of char took as low as 4.1 min in hematite bed at 950 °C. While catalytic effect of hematite was ruled out due to insignificant change in activation energy, it was concluded that increase in CO2 partial pressure at the vicinity of char particle enhanced the reaction rate in the case of hematite bed. This study has generated relevant information for the CLC of Victorian brown coal with hematite as the oxygen carrier.

References

1.
International Energy Agency,
Tracking Power, 2020
,” https://www.iea.org/reports/tracking-power-2020, Accessed July 31, 2021.
2.
Buraimoh
,
O. M.
,
Olusola
,
O. I.
,
Humphrey
,
I.
,
Raheem
,
I. A.
,
Onyekachi
U. K.
, and
Ogundipe
O. T.
,
2020
, “
Bioconversion of Organic Wastes for Sustainable Biogas Production Using Locally Sourced Materials
,”
Int. J. Energy Clean Environ.
,
21
(
3
), pp.
201
219
.
3.
Plashykhin
,
S. V.
,
Bojko
,
T. V.
,
Skladannyy
,
D. N.
,
Zaporozhets
,
J. A.
, and
Safiants
,
A. S.
,
2020
, “
Flue Gas Purification From Sulfur Oxides and Ash During Solid Fuel Combustion in Low-Power Boilers
,”
Int. J. Energy Clean Environ.
,
21
(
4
), pp.
355
374
.
4.
Kerdsuwan
,
S.
, and
Laohalidanond
,
K.
,
2021
, “
Green Energy Recovery From Waste in Thailand: Current Situation and Perspectives
,”
Int. J. Energy Clean Environ.
,
22
(
5
), pp.
103
122
.
5.
Adanez
,
J.
,
Abad
,
A.
,
Garcia-Labiano
,
F.
,
Gayan
,
P.
, and
de Diego
,
L. F.
,
2012
, “
Progress in Chemical-Looping Combustion and Reforming Technologies
,”
Prog. Energy Combust. Sci.
,
38
(
2
), pp.
215
282
.
6.
Yaqub
,
Z. T.
, and
Oboirien
,
B. O.
,
2020
, “
Process Modelling of Chemical Looping Combustion of Paper, Plastics
,”
Paper/Plastic Blend Waste, and Coal. ACS Omega
,
5
(
35
), pp.
22420
22429
.
7.
Arezki
,
R.
,
Bolton
,
P.
,
El Aynaoui
,
K.
, and
Obstfeld
,
M.
,
2018
,
Coping With the Climate Crisis: Mitigation Policies and Global Coordination
,
Columbia University Press
,
New York/Chichester/West Sussex
.
8.
Chen
,
L.
, and
Bhattacharya
,
S.
,
2013
, “
Sulfur Emission From Victorian Brown Coal Under Pyrolysis, Oxy-Fuel Combustion and Gasification Conditions
,”
Environ. Sci. Technol.
,
47
(
3
), pp.
1729
1734
.
9.
Rajendran
,
S.
,
Wong
,
M.
,
Stokie
,
D.
, and
Bhattacharya
,
S.
,
2016
, “
Performance of a Victorian Brown Coal and Iron Ore During Chemical Looping Combustion in a 10 KWth Alternating Fluidized Bed
,”
Fuel
,
183
(
SI
), pp.
245
252
.
10.
Saha
,
C.
,
2012
,
Chemical Looping Combustion of Victorian Brown Coal, in Chemical Engineering
,
Monash University
,
Clayton, Victoria, Australia
.
11.
Saha
,
C.
, and
Bhattacharya
,
S.
,
2011
, “
Comparison of CuO and NiO as Oxygen Carrier in Chemical Looping Combustion of a Victorian Brown Coal
,”
Int. J. Hydrogen Energy
,
36
(
18
), pp.
12048
12057
.
12.
Saha
,
C.
,
Zhang
,
S.
,
Hein
,
K.
,
Xiao
,
R.
, and
Bhattacharya
,
S.
,
2013
, “
Chemical Looping Combustion (CLC) of Two Victorian Brown Coals–Part 1: Assessment of Interaction Between CuO and Minerals Inherent in Coals During Single Cycle Experiment
,”
Fuel
,
104
(
SI
), pp.
262
274
.
13.
Rajendran
,
S.
,
Zhang
,
S.
,
Xiao
,
R.
, and
Bhattacharya
,
S.
,
2015
, “
Use of Synthetic Oxygen Carriers for Chemical Looping Combustion of Victorian Brown Coal
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3619
3627
.
14.
Dennis
,
J. S.
, and
Scott
,
S. A.
,
2010
, “
In Situ Gasification of a Lignite Coal and CO2 Separation Using Chemical Looping With a Cu-Based Oxygen Carrier
,”
Fuel
,
89
(
7
), pp.
1623
1640
.
15.
Dennis
,
J.
,
Scott
,
S.
, and
Hayhurst
,
A.
,
2006
, “
In Situ Gasification of Coal Using Steam With Chemical Looping: A Technique for Isolating CO2 From Burning a Solid Fuel
,”
J. Energy Inst.
,
79
(
3
), pp.
187
190
.
16.
Scott
,
S.
,
Dennis
,
J. S.
,
Hayhurst
,
A. N.
, and
Brown
,
T.
,
2006
, “
In Situ Gasification of a Solid Fuel and CO2 Separation Using Chemical Looping
,”
AIChE J.
,
52
(
9
), pp.
3325
3328
.
17.
Brown
,
T.
,
Dennis
,
J. S.
,
Scott
,
S. A.
,
Davidson
,
J. F.
, and
Hayhurst
,
A. N.
,
2010
, “
Gasification and Chemical-Looping Combustion of a Lignite Char in a Fluidized Bed of Iron Oxide
,”
Energy Fuels
,
24
(
5
), pp.
3034
3048
.
18.
Bhattacharya
,
S.
,
Kabir
,
K. B.
, and
Hein
,
K.
,
2013
, “
Dimethyl Ether Synthesis From Victorian Brown Coal Through Gasification–Current Status, and Research and Development Needs
,”
Prog. Energy Combust. Sci.
,
39
(
6
), pp.
577
605
.
19.
Tanner
,
J.
, and
Bhattacharya
,
S.
,
2016
, “
Kinetics of CO2 and Steam Gasification of Victorian Brown Coal Chars
,”
Chem. Eng. J.
,
285
, pp.
331
340
.
20.
Kabir
,
K. B.
,
Tahmasebi
,
A.
,
Bhattacharya
,
S.
, and
Yu
,
J.
,
2016
, “
Intrinsic Kinetics of CO2 Gasification of a Victorian Coal Char
,”
J. Therm. Anal. Calorim.
,
123
(
2
), pp.
1685
1694
.
21.
Speight
,
J. G.
,
2019
, “Chapter 13—Upgrading by Gasification,”
Heavy Oil Recovery and Upgrading
,
J. G.
Speight
, ed.,
Gulf Professional Publishing
, pp.
559
614
.
22.
Stoesser
,
P.
,
Schneider
,
C.
,
Kreitzberg
,
T.
,
Kneer
,
R.
, and
Kolb
,
T.
,
2018
, “
On the Influence of Different Experimental Systems on Measured Heterogeneous Gasification Kinetics
,”
Appl. Energy
,
211
(
1
), pp.
582
589
.
23.
Ochoa
,
J.
,
Cassanello
,
M. C.
,
Bonelli
,
P. R.
, and
Cukierman
,
A. L.
,
2001
, “
CO2 Gasification of Argentinean Coal Chars: a Kinetic Characterization
,”
Fuel Process. Technol.
,
74
(
3
), pp.
161
176
.
24.
Malekshahian
,
M.
, and
Hill
,
J. M.
,
2011
, “
Kinetic Analysis of CO2 Gasification of Petroleum Coke at High Pressures
,”
Energy Fuels
,
25
(
9
), pp.
4043
4048
.
25.
Li
,
C.
,
Zhao
,
J.
,
Fang
,
Y.
, and
Wang
,
Y.
,
2010
, “
Effect of Pressure on Gasification Reactivity of Three Chinese Coals with Different Ranks
,”
Front. Chem. Eng. China
,
4
(
4
), pp.
385
393
.
26.
Saucedo
,
M. A.
,
Lim
,
J. Y.
,
Dennis
,
J. S.
, and
Scott
,
S. A.
,
2014
, “
CO2-Gasification of a Lignite Coal in the Presence of an Iron-Based Oxygen Carrier for Chemical-Looping Combustion
,”
Fuel
,
127
(
1
), pp.
186
201
.
27.
Scala
,
F.
,
2015
, “
Fluidized Bed Gasification of Lignite Char With CO2 and H2O: A Kinetic Study
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
2839
2846
.
28.
Marek
,
E. J.
,
Zheng
,
Y.
, and
Scott
,
S. A.
,
2018
, “
Enhancement of Char Gasification in CO2 During Chemical Looping Combustion
,”
Chem. Eng. J.
,
354
(
1
), pp.
137
148
.
29.
Matsumoto
,
K.
,
Takeno
,
K.
,
Ichinose
,
T.
,
Ogi
,
T.
, and
Nakanishi
,
M.
,
2009
, “
Gasification Reaction Kinetics on Biomass Char Obtained as a By-Product of Gasification in an Entrained-Flow Gasifier With Steam and Oxygen at 900–1000 C
,”
Fuel
,
88
(
3
), pp.
519
527
.
30.
Kajitani
,
S.
,
Hara
,
S.
, and
Matsuda
,
H.
,
2002
, “
Gasification Rate Analysis of Coal Char With a Pressurized Drop Tube Furnace
,”
Fuel
,
81
(
5
), pp.
539
546
.
31.
Alonso
,
M.
,
Criado
,
Y. A.
,
Abanades
,
J.C.
, and
Grasa
,
G.
,
2014
, “
Undesired Effects in the Determination of CO2 Carrying Capacities of CaO During TG Testing
,”
Fuel
,
127
(
1
), pp.
52
61
.
32.
Wang
,
F.
,
Zeng
,
X.
,
Geng
,
S.
,
Yue
,
J.
,
Tang
,
S.
,
Cui
,
Y.
,
Yu
,
J.
and
Xu
,
G.
,
2017
, “
Distinctive Hydrodynamics of a Micro Fluidized Bed and Its Application to Gas–Solid Reaction Analysis
,”
Energy Fuels
,
32
(
4
), pp.
4096
4106
.
33.
Rajendran
,
S.
,
2015
,
Chemical Looping Combustion of Victorian Brown Coal Using Fe-Based Oxygen Carriers
,
Monash University
,
Clayton, Victoria, Australia
.
34.
Sayeed
,
I.
,
2020
,
Advancing Chemical Looping Combustion of Victorian Brown Coal Using Fe-Based Oxygen Carriers
,
Monash University
,
Clayton, Victoria, Australia
.
35.
Leion
,
H.
,
Mattisson
,
T.
, and
Lyngfelt
,
A.
,
2007
, “
The Use of Petroleum Coke as Fuel in Chemical-Looping Combustion
,”
Fuel
,
86
(
12–13
), pp.
1947
1958
.
36.
Dennis
,
J.
,
Lambert
,
R. J.
,
Milne
,
A. J.
,
Scott
,
S. A.
, and
Hayhurst
,
A. N.
,
2005
, “
The Kinetics of Combustion of Chars Derived From Sewage Sludge
,”
Fuel
,
84
(
2–3
), pp.
117
126
.
37.
Kibria
,
M.
,
Sripada
,
P.
, and
Bhattacharya
,
S.
,
2019
, “
Rational Design of Thermogravimetric Experiments to Determine Intrinsic Char Gasification Kinetics
,”
Proc. Combust. Inst.
,
37
(
3
), pp.
3023
3031
.
38.
Su
,
M.
,
Zhao
,
H.
,
Tian
,
X.
,
Zhang
,
P.
,
Du
,
B.
, and
Liu
,
Z.
,
2017
, “
Intrinsic Reduction Kinetics Investigation on a Hematite Oxygen Carrier by CO in Chemical Looping Combustion
,”
Energy Fuels
,
31
(
3
), pp.
3010
3018
.
39.
Lu
,
G.
, and
Do
,
D.
,
1994
, “
Comparison of Structural Models for High-Ash Char Gasification
,”
Carbon
,
32
(
2
), pp.
247
263
.
40.
Gadsby
,
J.
,
Hinshelwood
,
C. N.
, and
Sykes
,
K.
,
1946
, “
The Kinetics of the Reactions of the Steam-Carbon System
,”
Proc. R. Soc. London, A
,
187
(
1009
), pp.
129
151
.
41.
Laurendeau
,
N. M.
,
1978
, “
Heterogeneous Kinetics of Coal Char Gasification and Combustion
,”
Prog. Energy Combust. Sci.
,
4
(
4
), pp.
221
270
.
42.
Senneca
,
O.
,
Salatino
,
P.
, and
Masi
,
S.
,
1998
, “
Microstructural Changes and Loss of Gasification Reactivity of Chars upon Heat Treatment
,”
Fuel
,
77
(
13
), pp.
1483
1493
.
43.
Nishiyama
,
Y.
,
1991
, “
Catalytic Gasification of Coals—Features and Possibilities
,”
Fuel Process. Technol.
,
29
(
1–2
), pp.
31
42
.
44.
Wall
,
T. F.
,
Liu
,
G. S.
,
Wu
,
H. W.
,
Roberts
,
D. G.
,
Benfell
,
K. E.
,
Gupta
,
S.
,
Lucas
,
J. A.
, and
Harris
,
D. J
,
2002
, “
The Effects of Pressure on Coal Reactions During Pulverised Coal Combustion and Gasification
,”
Prog. Energy Combust. Sci.
,
28
(
5
), pp.
405
433
.
45.
Li
,
Y.
,
Wang
,
H.
,
Li
,
W.
,
Li,
Z.
, and
Cai
,
N.
,
2018
, “
CO2 Gasification of a Lignite Char in Microfluidized Bed Thermogravimetric Analysis for Chemical Looping Combustion and Chemical Looping With Oxygen Uncoupling
,”
Energy Fuels
,
33
(
1
), pp.
449
459
.
46.
Walker
,
P.
, Jr.
,
Rusinko
,
F.
, Jr.
, and
Austin
,
L. G.
,
1959
,
Gas Reactions of Carbon, in Advances in Catalysis
,
Elsevier
,
New York
, pp.
133
221
.
47.
Gadsby
,
J.
,
Long
,
F. J.
,
Sleightholm
,
P.
, and
Sykes
,
K. W.
,
1948
, “
The Mechanism of the Carbon Dioxide-Carbon Reaction
,”
Proc. R. Soc. London, A
,
193
(
1034
), pp.
357
376
.
48.
Reif
,
A. E.
,
1952
, “
The Mechanism of the Carbon Dioxide–Carbon Reaction
,”
J. Phys. Chem.
,
56
(
6
), pp.
785
788
.
You do not currently have access to this content.