Abstract

The dew point pressure (DPP) is a crucial thermodynamic property for gas reservoir performance evaluation, gas/condensate characterization, reservoir development and management, and downstream facility design. However, dew point pressure measurement is an expensive and time-consuming task; its estimation using the thermodynamic approaches has convergency problems, and available empirical correlations often provide high uncertainty levels. In this paper, the hybrid neuro-fuzzy connectionist paradigm is developed using 390 literature measurements. The adaptive neuro-fuzzy inference system (ANFIS) topology, including the training algorithm and cluster radius (radii), was determined by combining trial-and-error and statistical analyses. The hybrid optimization algorithm and radii = 0.675 are distinguished as the best characteristics for the ANFIS model. A high value of observed R2 = 0.97948 confirms the excellent performance of the designed approach for calculating the DPP of retrograde gas condensate reservoirs. Furthermore, visual inspections and statistical indices are employed to compare the ANFIS reliability and available empirical correlations. The results showed that the ANFIS model is more accurate than the well-known empirical correlations and previous intelligent paradigms in the literature. The designed ANFIS model, the best empirical correlation, and the most accurate intelligent paradigm in the literature present the absolute average relative deviation (AARD) of 1.60%, 11.25%, and 2.10%, respectively.

References

1.
Vaferi
,
B.
, and
Eslamloueyan
,
R.
,
2016
, “
Characterization of Gas/Gas Condensate Reservoirs by Deconvolution of Multirate Well Test Data
,”
J. Porous Media
,
19
(
12
), pp.
1061
1081
.
2.
Al Ghamdi
,
B. N.
, and
Ayala H
,
L. F.
,
2017
, “
Evaluation of Transport Properties Effect on the Performance of Gas-Condensate Reservoirs Using Compositional Simulation
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032910
.
3.
Yi
,
Y.
,
Li
,
J.
, and
Ji
,
L.
,
2017
, “
Numerical Determination of Critical Condensate Saturation in Gas Condensate Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062801
.
4.
Guo
,
X.
,
Liu
,
J.
,
Dai
,
L.
,
Liu
,
Q.
,
Fang
,
D.
,
Wei
,
A.
, and
Wang
,
J.
,
2021
, “
Friction-Wear Failure Mechanism of Tubing Strings Used in High-Pressure, High-Temperature and High-Yield Gas Wells
,”
Wear
,
468
, p.
203576
.
5.
Ahmed
,
T.
,
2018
,
Reservoir Engineering Handbook
,
Gulf Professional Publishing
,
Houston, TX
.
6.
Zhang
,
K.
,
Zhang
,
J.
,
Ma
,
X.
,
Yao
,
C.
,
Zhang
,
L.
,
Yang
,
Y.
,
Wang
,
J.
,
Yao
,
J.
, and
Zhao
,
H.
,
2021
, “
History Matching of Naturally Fractured Reservoirs Using a Deep Sparse Autoencoder
,”
SPE J.
,
26
(
4
), pp.
1700
1721
.
7.
Yang
,
Y.
,
Tao
,
L.
,
Yang
,
H.
,
Iglauer
,
S.
,
Wang
,
X.
,
Askari
,
R.
,
Yao
,
J.
,
Zhang
,
K.
,
Zhang
,
L.
, and
Sun
,
H.
,
2020
, “
Stress Sensitivity of Fractured and Vuggy Carbonate: An X-Ray Computed Tomography Analysis
,”
J. Geophys. Res. Solid Earth
,
125
(
3
), pp.
1
21
.
8.
Zhang
,
K.
,
Jia
,
C.
,
Song
,
Y.
,
Jiang
,
S.
,
Jiang
,
Z.
,
Wen
,
M.
,
Huang
,
Y.
,
Liu
,
X.
,
Jiang
,
T.
, and
Peng
,
J.
,
2020
, “
Analysis of Lower Cambrian Shale Gas Composition, Source and Accumulation Pattern in Different Tectonic Backgrounds: A Case Study of Weiyuan Block in the Upper Yangtze Region and Xiuwu Basin in the Lower Yangtze Region
,”
Fuel
,
263
, p.
115978
.
9.
Khaksar Manshad
,
A.
,
Rostami
,
H.
,
Moein Hosseini
,
S.
, and
Rezaei
,
H.
,
2016
, “
Application of Artificial Neural Network–Particle Swarm Optimization Algorithm for Prediction of Gas Condensate Dew Point Pressure and Comparison With Gaussian Processes Regression–Particle Swarm Optimization Algorithm
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032903
.
10.
Tariq
,
Z.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2021
, “
Machine Learning Based Improved Pressure-Volume-Temperature Correlations for Black Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
113003
.
11.
Humoud
,
A. A.
, and
Al-Marhoun
,
M. A.
,
2001
, “
A New Correlation for Gas-Condensate Dewpoint Pressure Prediction
,”
SPE Middle East Oil Show
,
Manama, Bahrain
,
March
.
12.
Elsharkawy
,
A. M.
,
2002
, “
Predicting the Dew Point Pressure for Gas Condensate Reservoirs: Empirical Models and Equations of State
,”
Fluid Phase Equilib.
,
193
(
1–2
), pp.
147
165
.
13.
Arabi
,
M.
,
Dehshiri
,
A. M.
, and
Shokrgozar
,
M.
,
2018
, “
Modeling Transportation Supply and Demand Forecasting Using Artificial Intelligence Parameters (Bayesian Model)
,”
J. Appl. Eng. Sci.
,
16
(
1
), pp.
43
49
.
14.
Khalifeh
,
A.
, and
Vaferi
,
B.
,
2019
, “
Intelligent Assessment of Effect of Aggregation on Thermal Conductivity of Nanofluids—Comparison by Experimental Data and Empirical Correlations
,”
Thermochim. Acta
,
681
, p.
178377
.
15.
Alizadeh
,
S. M.
,
Khodabakhshi
,
A.
,
Abaei Hassani
,
P.
, and
Vaferi
,
B.
,
2021
, “
Smart-Identification of Petroleum Reservoir Well Testing Models Using Deep Convolutional Neural Networks (GoogleNet)
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
073008
.
16.
Lv
,
Z.
,
Qiao
,
L.
,
Li
,
J.
, and
Song
,
H.
,
2020
, “
Deep-Learning-Enabled Security Issues in the Internet of Things
,”
IEEE Internet Things J.
,
8
(
12
), pp.
9531
9538
.
17.
Vaferi
,
B.
,
Eslamloueyan
,
R.
, and
Ayatollahi
,
S.
,
2015
, “
Application of Recurrent Networks to Classification of Oil Reservoir Models in Well-Testing Analysis
,”
Energy Sources, Part A Recovery Util. Environ. Eff.
,
37
(
2
), pp.
174
180
.
18.
Moghimihanjani
,
M.
, and
Vaferi
,
B.
,
2021
, “
A Combined Wavelet Transform and Recurrent Neural Networks Scheme for Identification of Hydrocarbon Reservoir Systems From Well Testing Signals
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
013001
.
19.
Rashidi
,
S.
, and
Khajehesfandeari
,
M.
,
2021
, “
Committee Machine-Ensemble as a General Paradigm for Accurate Prediction of Bubble Point Pressure of Crude Oil
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
023006
.
20.
Ulucak
,
O.
,
Kocak
,
E.
,
Bayer
,
O.
,
Beldek
,
U.
,
Yapıcı
,
, and
Aylı
,
E.
,
2021
, “
Developing and Implementation of an Optimization Technique for Solar Chimney Power Plant With Machine Learning
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
52109
.
21.
Ahmed
,
A.
,
Elkatatny
,
S.
, and
Ali
,
A.
,
2021
, “
Fracture Pressure Prediction Using Surface Drilling Parameters by Artificial Intelligence Techniques
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
033201
.
22.
Feng
,
Q.
,
Cui
,
R.
,
Wang
,
S.
,
Zhang
,
J.
, and
Jiang
,
Z.
,
2019
, “
Estimation of CO2 Diffusivity in Brine by Use of the Genetic Algorithm and Mixed Kernels-Based Support Vector Machine Model
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
041001
.
23.
Daneshfar
,
R.
,
Keivanimehr
,
F.
,
Mohammadi-Khanaposhtani
,
M.
, and
Baghban
,
A.
,
2020
, “
A Neural Computing Strategy to Estimate Dew-Point Pressure of Gas Condensate Reservoirs
,”
Pet. Sci. Technol.
,
38
(
10
), pp.
706
712
.
24.
González
,
A.
,
Barrufet
,
M. A.
, and
Startzman
,
R.
,
2003
, “
Improved Neural-Network Model Predicts Dewpoint Pressure of Retrograde Gases
,”
J. Pet. Sci. Eng.
,
37
(
3–4
), pp.
183
194
.
25.
Majidi
,
S. M. J.
,
Shokrollahi
,
A.
,
Arabloo
,
M.
,
Mahdikhani-Soleymanloo
,
R.
, and
Masihi
,
M.
,
2014
, “
Evolving an Accurate Model Based on Machine Learning Approach for Prediction of Dew-Point Pressure in Gas Condensate Reservoirs
,”
Chem. Eng. Res. Des.
,
92
(
5
), pp.
891
902
.
26.
Jalali
,
F.
,
Abdy
,
Y.
, and
Akbari
,
M. K.
,
2007
, “
Using Artificial Neural Network’s Capability for Estimation of Gas Condensate Reservoir’s Dew Point Pressure
,”
EUROPEC/EAGE Conference and Exhibition
,
Society of Petroleum Engineers
,
London, UK
27.
Al-Dhamen
,
M.
, and
Al-Marhoun
,
M.
,
2011
, “
New Correlations for Dew-Point Pressure for Gas Condensate
,”
SPE Saudi Arabia Section Young Professionals Technical Symposium
,
Society of Petroleum Engineers
,
Dhahran, Saudi Arabia
.
28.
Haji-Savameri
,
M.
,
Menad
,
N. A.
,
Norouzi-Apourvari
,
S.
, and
Hemmati-Sarapardeh
,
A.
,
2020
, “
Modeling Dew Point Pressure of Gas Condensate Reservoirs: Comparison of Hybrid Soft Computing Approaches, Correlations, and Thermodynamic Models
,”
J. Pet. Sci. Eng.
,
184
, p.
106558
.
29.
Rostami-Hosseinkhani
,
H.
,
Esmaeilzadeh
,
F.
, and
Mowla
,
D.
,
2014
, “
Application of Expert Systems for Accurate Determination of Dew-Point Pressure of Gas Condensate Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
18
, pp.
296
303
.
30.
Ahmadi
,
M. A.
,
Ebadi
,
M.
, and
Yazdanpanah
,
A.
,
2014
, “
Robust Intelligent Tool for Estimating Dew Point Pressure in Retrograded Condensate Gas Reservoirs: Application of Particle Swarm Optimization
,”
J. Pet. Sci. Eng.
,
123
, pp.
7
19
.
31.
Rabiei
,
A.
,
Sayyad
,
H.
,
Riazi
,
M.
, and
Hashemi
,
A.
,
2015
, “
Determination of Dew Point Pressure in Gas Condensate Reservoirs Based on a Hybrid Neural Genetic Algorithm
,”
Fluid Phase Equilib.
,
387
, pp.
38
49
.
32.
Saghafi
,
H.
, and
Arabloo
,
M.
,
2018
, “
Development of Genetic Programming (GP) Models for Gas Condensate Compressibility Factor Determination Below Dew Point Pressure
,”
J. Pet. Sci. Eng.
,
171
, pp.
890
904
.
33.
Kaydani
,
H.
,
Mohebbi
,
A.
, and
Hajizadeh
,
A.
,
2016
, “
Dew Point Pressure Model for Gas Condensate Reservoirs Based on Multi-gene Genetic Programming Approach
,”
Appl. Soft Comput.
,
47
, pp.
168
178
.
34.
Kamari
,
A.
,
Sattari
,
M.
,
Mohammadi
,
A. H.
, and
Ramjugernath
,
D.
,
2016
, “
Rapid Method for the Estimation of Dew Point Pressures in Gas Condensate Reservoirs
,”
J. Taiwan Inst. Chem. Eng.
,
60
, pp.
258
266
.
35.
Ahmadi
,
M. A.
, and
Elsharkawy
,
A.
,
2017
, “
Robust Correlation to Predict Dew Point Pressure of Gas Condensate Reservoirs
,”
Petroleum
,
3
(
3
), pp.
340
347
.
36.
Shokir
,
E. M. E.-M.
,
2008
, “
Dewpoint Pressure Model for Gas Condensate Reservoirs Based on Genetic Programming
,”
Energy Fuels
,
22
(
5
), pp.
3194
3200
.
37.
Rostami
,
H.
, and
Manshad
,
A. K.
,
2014
, “
Application of Evolutionary Gaussian Processes Regression by Particle Swarm Optimization for Prediction of Dew Point Pressure in Gas Condensate Reservoirs
,”
Neural Comput. Appl.
,
24
(
3
), pp.
705
713
.
38.
Ahmadi
,
M. A.
, and
Ebadi
,
M.
,
2014
, “
Evolving Smart Approach for Determination Dew Point Pressure Through Condensate Gas Reservoirs
,”
Fuel
,
117
, pp.
1074
1084
.
39.
Arabloo
,
M.
,
Shokrollahi
,
A.
,
Gharagheizi
,
F.
, and
Mohammadi
,
A. H.
,
2013
, “
Toward a Predictive Model for Estimating Dew Point Pressure in Gas Condensate Systems
,”
Fuel Process. Technol.
,
116
, pp.
317
324
.
40.
Zhong
,
Z.
,
Liu
,
S.
,
Kazemi
,
M.
, and
Carr
,
T. R.
,
2018
, “
Dew Point Pressure Prediction Based on Mixed-Kernels-Function Support Vector Machine in Gas-Condensate Reservoir
,”
Fuel
,
232
, pp.
600
609
.
41.
Najafi-Marghmaleki
,
A.
,
Tatar
,
A.
,
Barati-Harooni
,
A.
,
Choobineh
,
M.-J.
, and
Mohammadi
,
A. H.
,
2016
, “
GA-RBF Model for Prediction of Dew Point Pressure in Gas Condensate Reservoirs
,”
J. Mol. Liq.
,
223
, pp.
979
986
.
42.
Adetiloye
,
B.
,
2013
, “
Determination of The Dew-Point Pressure (DPP) For A Gas Condensate Fluid By Genetic Algorithm (GA)
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 30
.
43.
Khan
,
M. R.
,
Kalam
,
S.
,
Tariq
,
Z.
, and
Abdulraheem
,
A.
,
2019
, “
A Novel Empirical Correlation to Predict the Dew Point Pressure Using Intelligent Algorithms
,”
Abu Dhabi International Petroleum Exhibition & Conference
,
Abu Dhabi, UAE
,
Nov. 11
.
44.
Keyvani
,
F.
,
Amani
,
M. J.
,
Kalantariasl
,
A.
, and
Vahdani
,
H.
,
2019
, “
Assessment of Empirical Pressure–Volume–Temperature Correlations in Gas Condensate Reservoir Fluids: Case Studies
,”
Nat. Resour. Res.
,
29
, pp.
1857
1874
.
45.
Li
,
C.
,
Peng
,
Y.
,
Dong
,
J.
, and
Chen
,
L.
,
2015
, “
Prediction of the Dew Point Pressure for Gas Condensate Using a Modified Peng–Robinson Equation of State and a Four-Coefficient Molar Distribution Function
,”
J. Nat. Gas Sci. Eng.
,
27
, pp.
967
978
.
46.
Aghamiri
,
S.
,
Tamtaji
,
M.
, and
Ghafoori
,
M. J.
,
2018
, “
Developing a K-Value Equation for Predict Dew Point Pressure of Gas Condensate Reservoirs at High Pressure
,”
Petroleum
,
4
(
4
), pp.
437
443
.
47.
Wang
,
J.
,
Zhu
,
P.
,
He
,
B.
,
Deng
,
G.
,
Zhang
,
C.
, and
Huang
,
X.
,
2021
, “
An Adaptive Neural Sliding Mode Control with ESO for Uncertain Nonlinear Systems
,”
Int. J. Control Autom. Syst.
,
19
(
2
), pp.
687
697
.
48.
Tavana
,
M.
,
Mousavi
,
H.
,
Nasr
,
A. K.
, and
Mina
,
H.
,
2021
, “
A Fuzzy Weighted Influence Non-linear Gauge System With Application to Advanced Technology Assessment at NASA
,”
Expert Syst. Appl.
,
182
, pp.
115274
.
49.
Louli
,
V.
,
Pappa
,
G.
,
Boukouvalas
,
C.
,
Skouras
,
S.
,
Solbraa
,
E.
,
Christensen
,
K. O.
, and
Voutsas
,
E.
,
2012
, “
Measurement and Prediction of Dew Point Curves of Natural Gas Mixtures
,”
Fluid Phase Equilib.
,
334
, pp.
1
9
.
50.
Ahmed
,
T.
,
2013
,
Equations of State and PVT Analysis
,
Elsevier
,
Houston, TX
.
51.
Nowroozi
,
S.
,
Ranjbar
,
M.
,
Hashemipour
,
H.
, and
Schaffie
,
M.
,
2009
, “
Development of a Neural Fuzzy System for Advanced Prediction of Dew Point Pressure in Gas Condensate Reservoirs
,”
Fuel Process. Technol.
,
90
(
3
), pp.
452
457
.
52.
Yang
,
T.
,
Chen
,
W.-D.
, and
Guo
,
T.-M.
,
1997
, “
Phase Behavior of a Near-Critical Reservoir Fluid Mixture
,”
Fluid Phase Equilib.
,
128
(
1–2
), pp.
183
197
.
53.
Maleki
,
M. R.
,
Rashidi
,
F.
,
Mahani
,
H.
, and
Khamehchi
,
E.
,
2012
, “
A Simulation Study of the Enhancement of Condensate Recovery From One of the Iranian Naturally Fractured Condensate Reservoirs
,”
J. Pet. Sci. Eng.
,
92–93
, pp.
158
166
.
54.
Mazloom
,
J.
,
Rashidi
,
F.
, and
Kelly
,
R.
,
2004
, “
A Novel Approach to the Calculation of the Distance of a Sealing Fault From a Well in a Gas Condensate Reservoir
,”
J. Pet. Sci. Eng.
,
45
(
3–4
), pp.
149
158
.
55.
Vega
,
L.
, and
Barrufet
,
M. A.
,
2005
, “
Analysis of a Non-Volumetric Gas-Condensate Reservoir Using a Generalized Material Balance Equation With Fluid Properties From an Equation of State
,”
J. Pet. Sci. Eng.
,
48
(
1–2
), pp.
105
119
.
56.
Standing
,
M. B.
,
1979
, “
A Set of Equations for Computing Equilibrium Ratios of a Crude Oil/Natural Gas System at Pressures Below 1,000 Psia
,”
J. Pet. Technol.
,
31
(
9
), pp.
1
193
.
57.
Almehaideb
,
R. A.
,
Abdulkarim
,
M. A.
, and
Al-Khanbashi
,
A. S.
,
2001
, “
Improved K-Values Correlation for UAE Crude Oil Components at Low Pressures Using PVT Laboratory Data
,”
Fuel
,
80
(
1
), pp.
117
124
.
58.
Nemeth
,
L. K.
, and
Kennedy
,
H. T.
,
1967
, “
A Correlation of Dewpoint Pressure with Fluid Composition and Temperature
,”
Soc. Pet. Eng. J.
,
7
(
2
), pp.
99
104
.
59.
Vaferi
,
B.
,
Lashkarbolooki
,
M.
,
Esmaeili
,
H.
, and
Shariati
,
A.
,
2018
, “
Toward Artificial Intelligence-Based Modeling of Vapor Liquid Equilibria of Carbon Dioxide and Refrigerant Binary Systems
,”
J. Serb. Chem. Soc.
,
83
(
2
), pp.
199
211
.
60.
Gholami
,
E.
,
Vaferi
,
B.
, and
Ariana
,
M. A.
,
2018
, “
Prediction of Viscosity of Several Alumina-Based Nanofluids Using Various Artificial Intelligence Paradigms—Comparison With Experimental Data and Empirical Correlations
,”
Powder Technol.
,
323
, pp.
495
506
.
61.
Davoudi
,
E.
, and
Vaferi
,
B.
,
2018
, “
Applying Artificial Neural Networks for Systematic Estimation of Degree of Fouling in Heat Exchangers
,”
Chem. Eng. Res. Des.
,
130
(
February 2018
), pp.
138
153
.
62.
Ghanbari
,
S.
, and
Vaferi
,
B.
,
2015
, “
Experimental and Theoretical Investigation of Water Removal From DMAZ Liquid Fuel by an Adsorption Process
,”
Acta Astronaut.
,
112
, pp.
19
28
.
63.
Vaferi
,
B.
,
Eslamloueyan
,
R.
, and
Ayatollahi
,
S.
,
2011
, “
Automatic Recognition of Oil Reservoir Models From Well Testing Data by Using Multi-layer Perceptron Networks
,”
J. Pet. Sci. Eng.
,
77
(
3–4
), pp.
254
262
.
64.
Daryayehsalameh
,
B.
,
Nabavi
,
M.
, and
Vaferi
,
B.
,
2021
, “
Modeling of CO2 Capture Ability of [Bmim][BF4] Ionic Liquid Using Connectionist Smart Paradigms
,”
Environ. Technol. Innovation
,
22
, p.
101484
.
You do not currently have access to this content.