Abstract

Extreme weather conditions in the Gulf, Qatar, have been taken as an example in this study, tend to be hot and humid mostly throughout the year, especially in the summer. Such weather negatively affects the performance and emissions of all combustion engines, in particular diesel engines. In this work, a modified air-conditioning system was designed for controlling the inlet air temperature and humidity of a naturally aspirated single-cylinder diesel engine. The study investigated the effect of running the engine at different controlled inlet air temperatures on the engine performance and emission characteristics. It was found that running the diesel engine at 20 °C inlet air temperature compared with 45 °C, the average ambient air temperature during summer in Qatar could increase the in-cylinder peak pressure by 10%, and the volumetric efficiency of the engine by 8.5%. Moreover, the air-to-fuel (A/F) ratio has increased by 27.5% with 20 °C compared with 45 °C, while a minor effect was observed on the specific fuel consumption. For the emissions, there was a considerable reduction rate in NOx emissions with about 83% at 20 °C as well as a 50% reduction in hydrocarbon (HC) emissions compared with 45 °C. Furthermore, the smoke emission has decreased by 40% at the engine full load. It was also proved that using the air-conditioning system of a vehicle to cool the intake air temperature is visible, as the net gained the power of the engine has increased by 14.5% when running at 20 °C compared with 45 °C.

References

1.
Arbab
,
M. I.
,
Masjuki
,
H. H.
,
Varman
,
M.
,
Kalam
,
M. A.
,
Imtenan
,
S.
, and
Sajjad
,
H.
,
2013
, “
Fuel Properties, Engine Performance and Emission Characteristic of Common Biodiesels As a Renewable and Sustainable Source of Fuel
,”
Renewable Sustainable Energy Rev.
,
22
, pp.
133
147
.
2.
Agarwal
,
A. K.
,
Gupta
,
T.
, and
Kothari
,
A.
,
2011
, “
Particulate Emissions From Biodiesel Vs Diesel Fuelled Compression Ignition Engine
,”
Renewable Sustainable Energy Rev.
,
15
(
6
), pp.
3278
3300
.
3.
Abdellatif
,
Y. M.
,
Saker
,
A. T.
,
Elbashir
,
A. M.
, and
Ahmed
,
S. F.
,
2021
, “
Combustion and Emissions of a Gas-to-Liquid Diesel Engine Utilizing Optimized Spiral-Helical Intake Manifold Designs
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
062308
.
4.
Bassiony
,
M. A.
,
Sadiq
,
A. M.
,
Gergawy
,
M. T.
,
Ahmed
,
S. F.
, and
Ghani
,
S.
,
2018
, “
Investigating the Effect of Utilizing New Induction Manifold Designs on the Combustion Characteristics and Emissions of a DI Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
122202
.
5.
Sadeq
,
A. M.
,
Bassiony
,
M. A.
,
Elbashir
,
A. M.
,
Ahmed
,
S. F.
, and
Khraisheh
,
M.
,
2019
, “
Combustion and Emissions of a Diesel Engine Utilizing Novel Intake Manifold Designs and Running on Alternative Fuel
,”
Fuel
,
255
, p.
115769
.
6.
Elbashir
,
A. M.
,
Saker
,
A. T.
, and
Ahmed
,
S. F.
,
2021
, “
Effect of Utilizing a Novel Intake Manifold Design on Smoke Emissions and Particulate Size Distributions of a Gas-to-Liquid (GTL) Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
022301
.
7.
Sajjad
,
H.
,
Masjuki
,
H. H.
,
Varman
,
M.
,
Kalam
,
M. A.
,
Arbab
,
M. I.
,
Imtenan
,
S.
and
Ashrafur Rahman
,
S. M.
,
2014
, “
Engine Combustion, Performance and Emission Characteristics of Gas to Liquid (GTL) Fuels and Its Blends With Diesel and Bio-Diesel
,”
Renewable Sustainable Energy Rev.
,
30
, pp.
961
986
.
8.
Masum
,
B. M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Rizwanul Fattah
,
I. M.
,
Palash
,
S.
, and
Abedin
,
M. J.
,
2013
, “
Effect of Ethanol–Gasoline Blend on NOx Emission in SI Engine
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
209
222
.
9.
Ibrahim
,
A. S.
, and
Ahmed
,
S. F.
,
2015
, “
Measurements of Laminar Flame Speeds of Alternative Gaseous Fuel Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032209
.
10.
Samim
,
S.
,
Sadeq
,
A. M.
, and
Ahmed
,
S. F.
,
2016
, “
Measurements of Laminar Flame Speeds of GTL-Diesel Fuel Blends
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052213
.
11.
Sadeq
,
A. M.
,
Sleiti
,
A. K.
, and
Ahmed
,
S. F.
,
2020
, “
Turbulent Flames in Enclosed Combustion Chambers: Characteristics and Visualization—A Review
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
080801
.
12.
Sadeq
,
A. M.
,
Ahmed
,
S. F.
, and
Sleiti
,
A. K.
,
2021
, “
Transient 3D Simulations of Turbulent Premixed Flames of Gas-to-Liquid (GTL) Fuel in a Fan-Stirred Combustion Vessel
,”
Fuel
,
291
, p.
120184
.
13.
Lilik
,
G. K.
, and
Boehman
,
A. L.
,
2011
, “
Advanced Diesel Combustion of a High Cetane Number Fuel With Low Hydrocarbon and Carbon Monoxide Emissions
,”
Energy Fuels
,
25
(
25
), pp.
1444
1456
.
14.
Imtenan
,
S.
,
Varman
,
M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Sajjad
,
H.
,
Arbab
,
M. I.
and
Fattah
,
R.
,
2014
, “
Impact of Low Temperature Combustion Attaining Strategies on Diesel Engine Emissions for Diesel and Biodiesels: A Review
,”
Energy Convers. Manage.
,
80
, pp.
329
356
.
15.
Weather-and-Climate
,
2021
, “
Climate in Doha, Qatar
,” https://weather-and-climate.com/average-monthly-Rainfall-Temperature-Sunshine,doha,Qatar, Accessed June 2, 2021.
16.
Rakopoulos
,
C. D.
,
1991
, “
Influence of Ambient Temperature and Humidity on the Performance and Emissions of Nitric Oxide and Smoke of High Speed Diesel Engines in the Athens/Greece Region
,”
Energy Convers. Manage.
,
31
(
5
), pp.
447
458
.
17.
Abdullah
,
N. R.
,
Ismail
,
H.
,
Michael
,
Z.
,
Abdullah
,
A. R.
, and
Sharudin
,
H.
,
2015
, “
Effects of Air Intake Temperature on the Fuel Consumption and Exhaust Emissions of Natural Aspirated Gasoline Engine
,”
J. Teknol.
,
76
(
9
).
18.
Heywood
,
J. B.
,
2018
,
Internal Combustion Engine Fundamentals
, 2nd ed.,
McGraw-Hill Education
,
New York
.
19.
Pan
,
W.
,
Yao
,
C.
,
Han
,
G.
,
Wei
,
H.
, and
Wang
,
Q.
,
2015
, “
The Impact of Intake Air Temperature on Performance and Exhaust Emissions of a Diesel Methanol Dual Fuel Engine
,”
Fuel
,
162
, pp.
101
110
.
20.
Mingrui
,
W.
,
Thanh Sa
,
N.
,
Turkson
,
R. F.
,
Jinping
,
L.
, and
Guanlun
,
G.
,
2017
, “
Water Injection for Higher Engine Performance and Lower Emissions
,”
J. Energy Inst.
,
90
(
2
), pp.
285
299
.
21.
Ma
,
X.
,
Zhang
,
F.
,
Han
,
K.
,
Zhu
,
Z.
, and
Liu
,
Y.
,
2014
, “
Effects of Intake Manifold Water Injection on Combustion and Emissions of Diesel Engine
,”
Energy Procedia
,
61
, pp.
777
781
.
22.
Hassan
,
M. I.
, and
Brimmo
,
A. T.
,
2015
, “
Modeling In-Cylinder Water Injection in a 2-Stroke Internal Combustion Engine
,”
Energy Procedia
,
75
, pp.
2331
2336
.
23.
Gowthaman
,
S.
, and
Sathiyagnanam
,
A. P.
,
2016
, “
Effects of Charge Temperature and Fuel Injection Pressure on HCCI Engine
,”
Alexandria Eng. J.
,
55
(
1
), pp.
119
125
.
24.
Zheng
,
M.
,
Reader
,
G. T.
, and
Hawley
,
J. G.
,
2004
, “
Diesel Engine Exhaust Gas Recirculation—A Review on Advanced and Novel Concepts
,”
Energy Convers. Manage.
,
45
(
6
), pp.
883
900
.
25.
Mathur
,
M. L.
,
2014
,
Internal Combusion Engine
, 2nd ed.,
Dhanpat Rai Publications
,
India
.
26.
Pulkrabek
,
W. W.
,
2004
, “
Engineering Fundamentals of the Internal Combustion Engine, 2nd ed.
ASME J. Eng. Gas Turbines Power
,
126
(
1
), p.
198
.
27.
Muqeem
,
M.
,
Ahmad
,
M.
, and
Sherwani
,
A.
,
2015
, “
Turbocharging of Diesel Engine for Improving Performance and Exhaust Emissions: A Review
,”
IOSR J. Mech. Civ. Eng.
,
12
(
4
), pp.
22
29
.
28.
Naser Lajqi
,
B.
,
Bashkim Baxhaku
,
S. B.
, and
Lajqi
,
I.
,
2009
, “
Trends in the Development of Machinery and Associated Technology
,”
13th International Research/Expert Conference
,
Hammamet, Tunisia
.
29.
Canli
,
E.
,
Darici
,
S.
, and
Ozgoren
,
M.
,
2020
, “
Intercooler Effect on Conventional Supercharging Systems
,”
10th Anniversary International Scientific Conference
,
Gabrovo
.
30.
Zheng
,
M.
,
Irick
,
D. K.
, and
Hodgson
,
J.
,
2002
, “
Stabilizing Excessive EGR With an Oxidation Catalyst on a Modern Diesel Engine
,”
ASME 2002 Internal Combustion Engine Division Spring Technical Conference
,
Rockford, IL
,
Apr. 14–17
.
31.
Bromnick
,
P. A.
,
Pearson
,
R. J.
, and
Winterbone
,
D. E.
,
1998
, “
Intercooler Model for Unsteady Flows in Engine Manifolds
,”
Proc. Inst. Mech. Eng. D: J. Automob. Eng.
,
212
(
2
), pp.
119
132
.
32.
Nasution
,
H.
,
Aziz
,
A. A.
,
Latiff
,
Z. A.
,
Engkuah
,
S.
, and
Bahru
,
J.
,
2015
, “
Comparison of Air to Air and Air to Water Intercoolers in the Cooling Process of a Turbocharger Engine
,”
J. Teknologi
,
74
(
10
).
33.
Cipollone
,
R.
,
di Battista
,
D.
,
Gualtieri
,
A.
, and
Massimi
,
M.
,
2013
, “
Development of Thermal Modeling in Support of Engine Cooling Design
,” SAE Technical Paper 24-0090.
34.
Zegenhagen
,
M. T.
, and
Ziegler
,
F.
,
2015
, “
Experimental Investigation of the Characteristics of a Jet-Ejector and a Jet-Ejector Cooling System Operating With R134a As a Refrigerant
,”
Int. J. Refrig.
,
56
, pp.
173
185
.
35.
Zegenhagen
,
M. T.
, and
Ziegler
,
F.
,
2015
, “
Feasibility Analysis of an Exhaust Gas Waste Heat Driven Jet-Ejector Cooling System for Charge Air Cooling of Turbocharged Gasoline Engines
,”
Appl. Energy
,
160
, pp.
221
230
.
36.
Radchenko
,
R.
,
Pyrysunko
,
M.
,
Kornienko
,
V.
,
Konovalov
,
D.
, and
Girzheva
,
O.
,
2021
, “
Enhancing Energy Efficiency of Ship Diesel Engine With Gas Ecological Recirculation
,”
Design, Simulation, Manufacturing: The Innovation Exchange
, pp.
391
400
.
37.
di Battista
,
D.
,
Mauriello
,
M.
, and
Cipollone
,
R.
,
2015
, “
Waste Heat Recovery of an ORC-Based Power Unit in a Turbocharged Diesel Engine Propelling a Light Duty Vehicle
,”
Appl. Energy
,
152
, pp.
109
120
.
38.
Danilecki
,
K.
, and
Eliasz
,
J.
,
2020
, “
The Potential of Exhaust Waste Heat Use in a Turbocharged Diesel Engine for Charge Air Cooling
,”
SAE Technical Paper 2020-01-2089
.
39.
Radchenko
,
M.
,
Mikielewicz
,
D.
,
Andreev
,
A.
,
Vanyeyev
,
S.
, and
Savenkov
,
O.
,
2021
,
Integrated Computer Technologies in Mechanical Engineering
,
Springer, Cham
.
40.
Gentner
,
H.
,
1995
, “
Vergleichende Untersuchung von mechanics, elektrisch un thermisch angetriebenen Kälteanlagen für Fahrzeugklimatisierung
,” VDI-Forschungsberichte Reihe 19.82.
41.
Manzela
,
A. A.
,
Hanriot
,
S. M.
,
Cabezas-Gómez
,
L.
, and
Sodré
,
J. R.
,
2010
, “
Using Engine Exhaust Gas As Energy Source for an Absorption Refrigeration System
,”
Appl. Energy
,
87
(
4
), pp.
1141
1148
.
42.
Novella
,
R.
,
Dolz
,
V.
,
Martín
,
J.
, and
Royo-Pascual
,
L.
,
2017
, “
Thermodynamic Analysis of an Absorption Refrigeration System Used to Cool Down the Intake Air in an Internal Combustion Engine
,”
Appl. Therm. Eng.
,
111
, pp.
257
270
.
43.
di Battista
,
D.
,
Mauriello
,
M.
, and
Cipollone
,
R.
,
2015
, “
Effects of an ORC Based Heat Recovery System on the Performances of a Diesel Engine
,”
SAE Technical Paper 2015-01-1608
.
44.
Cipollone
,
R.
, and
Di Battista
,
D.
,
2012
, “
Performances and Opportunities of an Engine Cooling System With a Double Circuit at Two Temperature Levels
,” SAE Technical Papers.
45.
di Battista
,
D.
, and
Cipollone
,
R.
,
2016
, “
High Efficiency Air Conditioning Model Based Analysis for the Automotive Sector
,”
Int. J. Refrig.
,
64
, pp.
108
122
.
46.
di Battista
,
D.
,
di Bartolomeo
,
M.
,
Villante
,
C.
, and
Cipollone
,
R.
,
2017
, “
A Model Approach to the Sizing of an ORC Unit for WHR in Transportation Sector
,”
SAE Int. J. Commer. Veh.
,
10
(
2
), pp.
608
617
.
47.
di Battista
,
D.
,
di Bartolomeo
,
M.
, and
Cipollone
,
R.
,
2018
, “
Flow and Thermal Management of Engine Intake Air for Fuel and Emissions Saving
,”
Energy Convers. Manage.
,
173
, pp.
46
55
.
48.
Wei
,
M.
,
Li
,
S.
,
Xiao
,
H.
, and
Guo
,
G.
,
2017
, “
Combustion Performance and Pollutant Emissions Analysis Using Diesel/Gasoline/iso-Butanol Blends in a Diesel Engine
,”
Energy Convers. Manage.
,
149
, pp.
381
391
.
49.
García-Contreras
,
R.
,
Armas
,
O.
,
Mata
,
C.
, and
Villanueva
,
O.
,
2017
, “
Impact of Gas to Liquid and Diesel Fuels on the Engine Cold Start
,”
Fuel
,
203
, pp.
298
307
.
50.
M
,
S.
,
2005
, “
Effect of Engine Parameters and Gaseous Fuel Type on the Cyclic Variability of Dual Fuel Engines
,”
Fuel
,
84
(
7–8
), pp.
961
971
.
51.
Selim
,
M. Y. E.
,
2009
, “
Reducing the Viscosity of Jojoba Methyl Ester Diesel Fuel and Effects on Diesel Engine Performance and Roughness
,”
Energy Convers. Manage.
,
50
(
7
), pp.
1781
1788
.
52.
Huang
,
H.
,
Zhou
,
C.
,
Liu
,
Q.
,
Wang
,
Q.
, and
Wang
,
X.
,
2016
, “
An Experimental Study on the Combustion and Emission Characteristics of a Diesel Engine Under low Temperature Combustion of Diesel/Gasoline/n-Butanol Blends
,”
Appl. Energy
,
170
, pp.
219
231
.
53.
Rajesh Kumar
,
B.
, and
Saravanan
,
S.
,
2016
, “
Effects of Iso-Butanol/Diesel and n-Pentanol/Diesel Blends on Performance and Emissions of a DI Diesel Engine Under Premixed LTC (Low Temperature Combustion) Mode
,”
Fuel
,
170
, pp.
49
59
.
54.
Hoseini
,
S. S.
,
Najafi
,
G.
,
Ghobadian
,
B.
,
Mamat
,
R.
,
Sidik
,
N. A. C.
, and
Azmi
,
W. H.
,
2017
, “
The Effect of Combustion Management on Diesel Engine Emissions Fueled With Biodiesel–Diesel Blends
,”
Renewable Sustainable Energy Rev.
,
73
, pp.
307
331
.
55.
Asokan
,
M. A.
,
Senthur prabu
,
S.
,
Kamesh
,
S.
, and
Khan
,
W.
,
2018
, “
Performance, Combustion and Emission Characteristics of Diesel Engine Fuelled With Papaya and Watermelon Seed Oil Bio-Diesel/Diesel Blends
,”
Energy
,
145
, pp.
238
245
.
56.
Matti Maricq
,
M.
,
2007
, “
Chemical Characterization of Particulate Emissions From Diesel Engines: A Review
,”
J. Aerosol Sci.
,
38
(
11
), pp.
1079
1118
.
57.
Li
,
X.
,
Qiao
,
Z.
,
Su
,
L.
,
Li
,
X.
, and
Liu
,
F.
,
2017
, “
The Combustion and Emission Characteristics of a Multi-swirl Combustion System in a DI Diesel Engine
,”
Appl. Therm. Eng.
,
115
, pp.
1203
1212
.
You do not currently have access to this content.