Abstract

A clear understanding of the main controlling factors for injection and production allocation of polymer flooding is the key to successful differential adjustment for well management in high water cut reservoirs. Generally, sensitivity analysis or design of experiment is used to study the main controlling factors, but the number of adjustment parameters is limited and the optimal results are hard to obtain. Therefore, the paper regards the problem as an inverse problem and studies the controlling factors by combining intelligent optimization and correlation analysis. In general, the correlation between the optimal results of injection and production allocation and each controlling factor is analyzed, and the main controlling factors with the strongest correlation are selected. Results show that injection rate allocation is mainly controlled by pore volume, polymer concentration allocation is mainly controlled by pore volume and formation coefficient, and production rate allocation is mainly controlled by remaining reserves and oil saturation. The case study indicates injection and production adjustment based on the main controlling factors obtains satisfactory development performance while using much less computation cost than that of the intelligent optimization method. The research results provide a good reference for well redistribution adjustment of polymer flooding in large-scale oilfields.

References

1.
Wu
,
D.
,
Zhou
,
K.
,
Hou
,
J.
,
An
,
Z.
,
Zhai
,
M.
, and
Liu
,
W.
,
2020
, “
Experimental Study on Combining Heterogeneous Phase Composite Flooding and Streamline Adjustment to Improve Oil Recovery in Heterogeneous Reservoirs
,”
J. Pet. Sci. Eng.
,
194
, p.
107478
.
2.
Zhang
,
W.
,
Hou
,
J.
,
Liu
,
Y.
,
Du
,
Q.
,
Cao
,
W.
, and
Zhou
,
K.
,
2021
, “
Study on the Effect of Polymer Viscosity and Darcy Velocity on Relative Permeability Curves in Polymer Flooding
,”
J. Pet. Sci. Eng.
,
200
, p.
108393
.
3.
Zhou
,
K.
,
Hou
,
J.
,
Sun
,
Q.
,
Guo
,
L.
,
Bing
,
S.
,
Du
,
Q.
, and
Yao
,
C.
,
2018
, “
A Study on Particle Suspension Flow and Permeability Impairment in Porous Media Using LBM–DEM–IMB Simulation Method
,”
Transp. Porous Media
,
124
(
3
), pp.
681
698
.
4.
Azamipour
,
V.
,
Assareh
,
M.
,
Dehghani
,
M. R.
, and
Mittermeir
,
G. M.
,
2016
, “
An Efficient Workflow for Production Allocation During Water Flooding
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032902
.
5.
Keles
,
C.
,
Vasilikou
,
F.
,
Ripepi
,
N.
,
Agioutantis
,
Z.
, and
Karmis
,
M.
,
2019
, “
Sensitivity Analysis of Reservoir Conditions and Gas Production Mechanism in Deep Coal Seams in Buchanan County, Virginia
,”
Simul. Model. Pract. Theory
,
94
, pp.
31
42
.
6.
Vishal
,
V.
,
Lall
,
D.
,
Sarna
,
S.
,
Sharma
,
A.
, and
Ranjith
,
P. G.
,
2020
, “
Sensitivity Analysis of Methane Hydrate Bearing Class 3 Reservoirs During Thermal Injection
,”
J. Pet. Sci. Eng.
,
195
, p.
107575
.
7.
Carrero
,
E.
,
Queipo
,
N. V.
,
Pintos
,
S.
, and
Zerpa
,
L. E.
,
2007
, “
Global Sensitivity Analysis of Alkali-Surfactant-Polymer Enhanced Oil Recovery Process
,”
J. Pet. Sci. Eng.
,
58
(
1–2
), pp.
30
42
.
8.
Ghadami
,
N.
,
Das
,
A. K.
,
Tunio
,
K. H.
, and
Sabzabadi
,
A.
,
2015
, “
Sensitivity Analysis and Optimization of Alkaline-Surfactant Flooding in a Thin Clastic Reservoir
,”
Proceedings of the International Petroleum Technology Conference
,
Doha, Qatar
,
Dec. 6–9
, p.
18257
.
9.
Box
,
G. E. P.
, and
Behnken
,
D. W.
,
1960
, “
Some New Three Level Designs for the Study of Quantitative Variables
,”
Technometrics
,
2
(
4
), pp.
455
475
.
10.
Box
,
J. F.
,
1980
, “
R.A. Fisher and the Design of Experiments, 1922–1926
,”
Am. Stat.
,
34
(
1
), pp.
1
7
.
11.
Box
,
G. E. P.
, and
Wilson
,
K. B.
,
1992
, “On the Experimental Attainment of Optimum Conditions,”
Breakthroughs in Statistics
,
S.
Kotz
, and
N. L.
Johnson
, eds.,
Springer Series in Statistics (Perspectives in Statistics), Springer
,
New York
, pp.
270
310
.
12.
Fang
,
K. T.
,
Lin
,
D. K.
,
Winker
,
P.
, and
Zhang
,
Y.
,
2000
, “
Uniform Design: Theory and Application
,”
Technometrics
,
42
(
3
), pp.
237
248
.
13.
Yu
,
W.
, and
Sepehrnoori
,
K.
,
2014
, “
An Efficient Reservoir-Simulation Approach to Design and Optimize Unconventional Gas Production
,”
J. Can. Pet. Technol.
,
53
(
2
), pp.
109
121
.
14.
Naderi
,
M.
, and
Khamehchi
,
E.
,
2017
, “
Nonlinear Risk Optimization Approach to Water Drive Gas Reservoir Production Optimization Using DOE and Artificial Intelligence
,”
J. Nat. Gas Sci. Eng.
,
31
, pp.
575
584
.
15.
Luo
,
E.
,
Fan
,
Z.
,
Hu
,
Y.
,
Zhao
,
L.
,
Bo
,
B.
,
Yu
,
W.
,
Liang
,
H.
, et al
,
2020
, “
An Efficient Optimization Framework of Cyclic Steam Stimulation With Experimental Design in Extra Heavy Oil Reservoirs
,”
Energy
,
192
, p.
116601
.
16.
Zhang
,
A.
,
Fan
,
Z.
,
Zhao
,
L.
, and
He
,
C.
,
2021
, “
An Investigation on Sensitivity Analysis and Performance Prediction of Profile Control by Clay Particles for Polymer Flooded Reservoir
,”
J. Pet. Sci. Eng.
,
196
, p.
107690
.
17.
Hou
,
J.
,
Zhou
,
K.
,
Zhang
,
X. S.
,
Kang
,
X. D.
, and
Xie
,
H.
,
2015
, “
A Review of Closed-Loop Reservoir Management
,”
Pet. Sci.
,
12
(
1
), pp.
114
128
.
18.
Chen
,
B.
, and
Xu
,
J.
,
2019
, “
Stochastic Simplex Approximate Gradient for Robust Life-Cycle Production Optimization: Applied to Brugge Field
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092905
.
19.
Janiga
,
D.
,
Czarnota
,
R.
,
Stopa
,
J.
,
Wojnarowski
,
P.
, and
Kosowski
,
P.
,
2017
, “
Performance of Nature Inspired Optimization Algorithms for Polymer Enhanced Oil Recovery Process
,”
J. Pet. Sci. Eng.
,
154
, pp.
354
366
.
20.
Tariq
,
Z.
,
Mahmoud
,
M.
,
Al-Shehri
,
D.
,
Sibaweihi
,
N.
,
Sadeed
,
A.
, and
Hossain
,
M. E.
,
2018
, “
A Stochastic Optimization Approach for Profit Maximization Using Alkaline-Surfactant-Polymer Flooding in Complex Reservoirs
,”
Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
Apr. 23–26
, SPE, p.
192243
.
21.
Bahrami
,
P.
,
Kazemi
,
P.
,
Mahdavi
,
S.
, and
Ghobadi
,
H.
,
2016
, “
A Novel Approach for Modeling and Optimization of Surfactant/Polymer Flooding Based on Genetic Programming Evolutionary Algorithm
,”
Fuel
,
179
, pp.
289
298
.
22.
You
,
J.
,
Ampomah
,
W.
,
Sun
,
Q.
,
Kutsienyo
,
E. J.
,
Balch
,
R. S.
, and
Cather
,
M.
,
2019
, “
Multi-Objective Optimization of CO2 Enhanced Oil Recovery Projects Using a Hybrid Artificial Intelligence Approach
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
Calgary, Canada
,
Sept. 30–Oct. 2
, SPE, p.
196182
.
23.
Ma
,
H.
,
Yu
,
G.
,
She
,
Y.
, and
Gu
,
Y.
,
2019
, “
Waterflooding Optimization Under Geological Uncertainties by Using Deep Reinforcement Learning Algorithms
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
Calgary,Canada
,
Sept. 30–Oct. 2
, p.
196190
.
24.
Mohagheghian
,
E.
,
James
,
L. A.
, and
Haynes
,
R. D.
,
2018
, “
Optimization of Hydrocarbon Water Alternating Gas in the Norne Field: Application of Evolutionary Algorithm
,”
Fuel
,
223
, pp.
86
98
.
25.
Hou
,
J.
,
Zhou
,
K.
,
Zhao
,
H.
,
Kang
,
X.
,
Wang
,
S.
, and
Zhang
,
X.
,
2016
, “
Hybrid Optimization Technique for Cyclic Steam Stimulation by Horizontal Wells in Heavy Oil Reservoir
,”
Comput. Chem. Eng.
,
84
, pp.
363
370
.
26.
Eberhart
,
R. C.
, and
Kennedy
,
J.
,
1995
, “
A New Optimizer Using Particle Swarm Theory
,”
MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science
,
Nagoya, Japan
,
Oct. 4–6
, IEEE, pp.
39
43
.
27.
Zhang
,
K.
,
Wang
,
Y.
,
Li
,
G.
,
Ma
,
X.
,
Cui
,
S.
,
Luo
,
Q.
,
Wang
,
J.
,
Yang
,
Y.
, and
Yao
,
J.
,
2021
, “
Prediction of Field Saturations Using a Fully Convolutional Network Surrogate
,”
SPE J.
,
26
(
4
), pp.
1824
1836
.
28.
Zhou
,
K.
,
Hou
,
J.
,
Zhang
,
X.
,
Du
,
Q.
,
Kang
,
X.
, and
Jiang
,
S.
,
2013
, “
Optimal Control of Polymer Flooding Based on Simultaneous Perturbation Stochastic Approximation Method Guided by Finite Difference Gradient
,”
Comput. Chem. Eng.
,
55
, pp.
40
49
.
You do not currently have access to this content.