Abstract

Manure waste from dairy, livestock, and poultry industries can pose significant challenges in their disposal due to their odor, nitrogen, phosphorous, and heavy metals contents, and pathogens. Existing disposal techniques like anaerobic digestion, although can provide biogas with energy output, is a slow process with significant carbon loss to CO2 and can also result in leaching. High-temperature pyrolysis can convert these wastes into syngas along with biochar which can be used for various applications. Thermochemical conversion needs to be feed-flexible, and operating it with manures from various animal sources such as poultry and dairy sectors can provide sustained operation, intensified process, and improved conversion throughput. So, we examined high-temperature co-pyrolysis of chicken and cow manures to understand the influence of their mixture fractions on the syngas components and char yield. Lab-scale semi-batch co-pyrolysis was carried out for cow and chicken manures at 900 °C with mixture fractions varying from 0 to 100%. Syngas analysis from these tests revealed the presence of synergistic enhancement of its components and in terms of syngas energy yield and carbon conversion, a 2:3 ratio of cow to chicken manure resulted in the most enhancement compared to the expected aggregate of pyrolyzing cow and chicken manures separately. This paper provides a detailed analysis of these syngas components from co-pyrolysis in comparison with separate pyrolysis to explore the advantages of blended feedstock toward an efficient, clean, and feed-flexible pathway for manure waste disposal and utilization.

References

3.
Ruddy
,
B. C.
,
Lorenz
,
D. L.
, and
Mueller
,
D. K.
,
2006
, “County-Level Estimates of Nutrient Inputs to the Land Surface of the Conterminous United States, 1982–2001:U.S. Geological Survey Scientific Investigations Report 2006-5012,”
Scientific Investigations Report 2006-5012
,
USGS
,
USA
.
4.
Wu
,
H.
,
Hanna
,
M. A.
, and
Jones
,
D. D.
,
2013
, “
Life Cycle Assessment of Greenhouse Gas Emissions of Feedlot Manure Management Practices: Land Application Versus Gasification
,”
Biomass Bioenergy
,
54
, pp.
260
266
.
5.
EPA
,
2022
, “
Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990 to 2020. U.S. Environmental Protection Agency, EPA 430-R-22-003
,” https://www.epa.gov/ghgemissions/draft-inventory-us-greenhouse-gas-emissions-and-sinks-1990-2020.
6.
Committee on Environment and Natural Resources
,
2010
,
Scientific Assessment of Hypoxia in U.S. Coastal Waters. Interagency Working Group on Harmful Algal Blooms, Hypoxia, and Human Health of the Joint Subcommittee on Ocean Science and Technology
,
Washington, DC
.
7.
Su
,
G.
,
Ong
,
H. C.
,
Mohd Zulkifli
,
N. W.
,
Ibrahim
,
S.
,
Chen
,
W. H.
,
Chong
,
C. T.
, and
Ok
,
Y. S.
,
2022
, “
Valorization of Animal Manure via Pyrolysis for Bioenergy: A Review
,”
J. Clean. Prod.
,
343
, p.
130965
.
8.
Wijesinghe
,
D. T. N.
,
Suter
,
H. C.
,
Scales
,
P. J.
, and
Chen
,
D.
,
2021
, “
Lignite Addition During Anaerobic Digestion of Ammonium Rich Swine Manure Enhances Biogas Production
,”
J. Environ. Chem. Eng.
,
9
(
1
), p.
104669
.
9.
Li
,
S.
,
Zou
,
D.
,
Li
,
L.
,
Wu
,
L.
,
Liu
,
F.
,
Zeng
,
X.
,
Wang
,
H.
,
Zhu
,
Y.
, and
Xiao
,
Z.
,
2020
, “
Evolution of Heavy Metals During Thermal Treatment of Manure: A Critical Review and Outlooks
,”
Chemosphere
,
247
, p.
125962
.
10.
Nzihou
,
A.
, and
Stanmore
,
B.
,
2013
, “
The Fate of Heavy Metals During Combustion and Gasification of Contaminated Biomass-A Brief Review
,”
J. Hazard. Mater.
,
256–257
, pp.
56
66
.
11.
Lee
,
D. J.
,
Jung
,
S.
,
Jang
,
Y. N.
,
Jo
,
G.
,
Park
,
S. H.
,
Jeon
,
Y. J.
,
Park
,
Y. K.
, and
Kwon
,
E. E.
,
2020
, “
Offering a New Option to Valorize Hen Manure by CO2-Assisted Catalytic Pyrolysis Over Biochar and Metal Catalysts
,”
J. CO2 Util.
,
42
, p.
101344
.
12.
Wang
,
H.
,
Jing
,
Y.
,
Zhang
,
J.
,
Cao
,
Y.
, and
Lyu
,
L.
,
2021
, “
Preparation and Performance Evaluation of Swine Manure Bio-Oil Modified Rubber Asphalt Binder
,”
Constr. Build. Mater.
,
294
, p.
123584
.
13.
Ro
,
K. S.
,
Cantrell
,
K. B.
, and
Hunt
,
P. G.
,
2010
, “
High-Temperature Pyrolysis of Blended Animal Manures for Producing Renewable Energy and Value-Added Biochar
,”
Ind. Eng. Chem. Res.
,
49
(
20
), pp.
10125
10131
.
14.
Sharma
,
R.
,
Jasrotia
,
K.
,
Singh
,
N.
,
Ghosh
,
P.
,
Srivastava
,
S.
,
Sharma
,
N. R.
,
Singh
,
J.
,
Kanwar
,
R.
, and
Kumar
,
A.
,
2020
, “
A Comprehensive Review on Hydrothermal Carbonization of Biomass and Its Applications,” Chem
,”
Africa
,
3
(
1
), pp.
1
19
.
15.
Sanford
,
J.
,
Aguirre-Villegas
,
H.
,
Larson
,
R. A.
,
Sharara
,
M.
,
Liu
,
Z.
, and
Schott
,
L.
,
2022
, “
Biochar Production Through Slow Pyrolysis of Animal Manure
,” Manure Processing for Farm Sustainability. University of Wisconsin–Madison Division of Extension.
16.
Yao
,
D.
,
Hu
,
Q.
,
Wang
,
D.
,
Yang
,
H.
,
Wu
,
C.
,
Wang
,
X.
, and
Chen
,
H.
,
2016
, “
Hydrogen Production From Biomass Gasification Using Biochar as a Catalyst/Support
,”
Bioresour. Technol.
,
216
, pp.
159
164
.
17.
Kambo
,
H. S.
, and
Dutta
,
A.
,
2015
, “
A Comparative Review of Biochar and Hydrochar in Terms of Production, Physico-Chemical Properties and Applications
,”
Renew. Sustain. Energy Rev.
,
45
, pp.
359
378
.
18.
Hossain
,
M. Z.
,
Bahar
,
M. M.
,
Sarkar
,
B.
,
Donne
,
S. W.
,
Wade
,
P.
, and
Bolan
,
N.
,
2021
, “
Assessment of the Fertilizer Potential of Biochars Produced From Slow Pyrolysis of Biosolid and Animal Manures
,”
J. Anal. Appl. Pyrolysis
,
155
, p.
105043
.
19.
Li
,
Z.
,
Deng
,
H.
,
Yang
,
L.
,
Zhang
,
G.
,
Li
,
Y.
, and
Ren
,
Y.
,
2018
, “
Influence of Potassium Hydroxide Activation on Characteristics and Environmental Risk of Heavy Metals in Chars Derived From Municipal Sewage Sludge
,”
Bioresour. Technol.
,
256
, pp.
216
223
.
20.
Zhang
,
H.
,
Zhang
,
F.
, and
Huang
,
Q.
,
2017
, “
Highly Effective Removal of Malachite Green From Aqueous Solution by Hydrochar Derived From Phycocyanin-Extracted Algal Bloom Residues Through Hydrothermal Carbonization
,”
RSC Adv.
,
7
(
10
), pp.
5790
5799
.
21.
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2018
, “Thermochemical Reforming of Wastes to Renewable Fuels,”
Energy for Propulsion: A Sustainable Technologies Approach
,
A. K.
Runchal
,
A. K.
Gupta
,
A.
Kushari
,
A.
De
, and
S. K.
Aggarwal
, eds.,
Springer Singapore
,
Singapore
, pp.
395
428
.
22.
Font-Palma
,
C.
,
2012
, “
Characterisation, Kinetics and Modelling of Gasification of Poultry Manure and Litter: An Overview
,”
Energy Convers. Manag.
,
53
(
1
), pp.
92
98
.
23.
Cantrell
,
K. B.
,
Hunt
,
P. G.
,
Uchimiya
,
M.
,
Novak
,
J. M.
, and
Ro
,
K. S.
,
2012
, “
Impact of Pyrolysis Temperature and Manure Source on Physicochemical Characteristics of Biochar
,”
Bioresour. Technol.
,
107
, pp.
419
428
.
24.
Mante
,
O. D.
, and
Agblevor
,
F. A.
,
2010
, “
Influence of Pine Wood Shavings on the Pyrolysis of Poultry Litter
,”
Waste Manag.
,
30
(
12
), pp.
2537
2547
.
25.
Kim
,
S.-S.
, and
Agblevor
,
F. A.
,
2007
, “
Pyrolysis Characteristics and Kinetics of Chicken Litter
,”
Waste Manag.
,
27
(
1
), pp.
135
140
.
26.
Burra
,
K. G.
,
Hussein
,
M. S.
,
Amano
,
R. S.
, and
Gupta
,
A. K.
,
2016
, “
Syngas Evolutionary Behavior During Chicken Manure Pyrolysis and Air Gasification
,”
Appl. Energy
,
181
, pp.
408
415
.
27.
Burra
,
K. R. G.
, and
Gupta
,
A. K.
,
2019
, “
Modeling of Biomass Pyrolysis Kinetics Using Sequential Multi-step Reaction Model
,”
Fuel
,
237
, pp.
1057
1067
.
28.
Zhang
,
S. Y.
,
Hong
,
R. Y.
,
Cao
,
J. P.
, and
Takarada
,
T.
,
2009
, “
Influence of Manure Types and Pyrolysis Conditions on the Oxidation Behavior of Manure Char
,”
Bioresour. Technol.
,
100
(
18
), pp.
4278
4283
.
29.
Sasikumar
,
C.
,
Sundaresan
,
R.
,
Nagaraja
,
M.
, and
Rajaganapathy
,
C.
,
2021
, “
A Review on Energy Generation From Manure Biomass
,”
Mater. Today Proc.
,
45
, pp.
2408
2412
.
30.
Xiao
,
X.
,
Le
,
D. D.
,
Li
,
L.
,
Meng
,
X.
,
Cao
,
J.
,
Morishita
,
K.
, and
Takarada
,
T.
,
2010
, “
Catalytic Steam Gasification of Biomass in Fluidized Bed at Low Temperature: Conversion From Livestock Manure Compost to Hydrogen-Rich Syngas
,”
Biomass Bioenergy
,
34
(
10
), pp.
1505
1512
.
31.
Espindola
,
J.
,
Selim
,
O. M.
, and
Amano
,
R. S.
,
2021
, “
Co-Pyrolysis of Rice Husk and Chicken Manure
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022101
.
32.
Ro
,
K. S.
,
Hunt
,
P. G.
,
Jackson
,
M. A.
,
Compton
,
D. L.
,
Yates
,
S. R.
,
Cantrell
,
K.
, and
Chang
,
S.
,
2014
, “
Co-Pyrolysis of Swine Manure With Agricultural Plastic Waste: Laboratory-Scale Study
,”
Waste Manag.
,
34
(
8
), pp.
1520
1528
.
33.
Selim
,
O. M.
, and
Amano
,
R. S.
,
2021
, “
Co-Pyrolysis of Chicken and Cow Manure
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
011301
.
34.
Wang
,
Z.
,
Burra
,
K. G.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2021
, “
Co-Pyrolysis of Waste Plastic and Solid Biomass for Synergistic Production of Biofuels and Chemicals-A Review
,”
Prog. Energy Combust. Sci.
,
84
, p.
100899
.
35.
Burra
,
K. R. G.
, and
Gupta
,
A. K.
,
2020
, “Nonlinear Synergistic Effects in Thermochemical Co-Processing of Wastes for Sustainable Energy,”
Innovations in Sustainable Energy and Cleaner Environment
,
A. K.
Gupta
,
A.
De
,
S. K.
Aggarwal
,
A.
Kushari
, and
A.
Runchal
, eds.,
Springer Nature Singapore
,
Singapore
.
36.
Déparrois
,
N.
,
Singh
,
P.
,
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2019
, “
Syngas Production From Co-Pyrolysis and Co-Gasification of Polystyrene and Paper With CO2
,”
Appl. Energy
,
246
, pp.
1
10
.
37.
Burra
,
K. R. G.
,
Liu
,
X.
,
Wang
,
Z.
,
Li
,
J.
,
Che
,
D.
, and
Gupta
,
A. K.
,
2021
, “
Quantifying the Sources of Synergistic Effects in Co-Pyrolysis of Pinewood and Polystyrene
,”
Appl. Energy
,
302
, p.
117562
.
38.
Liu
,
X.
,
Burra
,
K. G.
,
Wang
,
Z.
,
Li
,
J.
,
Che
,
D.
, and
Gupta
,
A. K.
,
2020
, “
On Deconvolution for Understanding Synergistic Effects in Co-Pyrolysis of Pinewood and Polypropylene
,”
Appl. Energy
,
279
, p.
115811
.
39.
Li
,
J.
,
Burra
,
K. G.
,
Wang
,
Z.
,
Liu
,
X.
, and
Gupta
,
A. K.
,
2021
, “
Effect of Alkali and Alkaline Metals on Gas Formation Behavior and Kinetics During Pyrolysis of Pine Wood
,”
Fuel
,
290
, p.
120081
.
40.
Singh
,
P.
,
Déparrois
,
N.
,
Burra
,
K. G.
,
Bhattacharya
,
S.
, and
Gupta
,
A. K.
,
2019
, “
Energy Recovery From Cross-Linked Polyethylene Wastes Using Pyrolysis and CO 2 Assisted Gasi Fi Cation
,”
Appl. Energy
,
254
, p.
113722
.
41.
2018
, “
Phyllis2, Database for Biomass and Waste
,” Energy Research Center, Netherlands, https://www.ecn.nl/phyllis2/Biomass/View/3501, Accessed May 28, 2018.
You do not currently have access to this content.