Abstract

Salt cavern underground gas storage (UGS) has attracted more and more attention worldwide for high peak shaving efficiency and high short-term throughput. To ensure the safe operation of this type of UGS, it is necessary to evaluate and analyze its stability. This paper investigates the influences of interlayers and cavern interactions on salt cavern UGS's stability. A 3D geomechanical model of double-salt cavern UGS with interlayers is established based on the geological data and creep constitutive relation of salt rock. Based on the long-term creep numerical simulation, the influences of interlayer number, interlayer thickness, interlayer dip angle, interlayer stiffness, cavern spacing, and cavern pressure difference on the deformation of caverns and stability performance of UGS are studied. The results show that the UGS with greater interlayer numbers has larger cavern deformation. The increase in interlayer thickness will improve the deformation resistance of caverns, but the effect is not obvious. The UGS with an interlayer dip angle of 12.5 deg has the best stability. Soft interlayer will decrease the deformation resistance of caverns, while hard interlayer has the opposite effect. In addition, the UGS stability can be enhanced by reducing the pressure difference between adjacent caverns. It is reasonable that the cavern spacing is twice the cavern diameter, which is beneficial to the UGS stability and will not cause a waste of salt rock resources. Finally, the corresponding production and construction control measures are discussed according to each factor's influence degree.

References

1.
Kostowski
,
W.
,
Majchrzyk
,
M.
, and
Kolodziej
,
K.
,
2022
, “
Pressure-Based Energy Storage in Natural Gas Transmission Networks: Proof-of-Concept Analysis
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
050904
.
2.
Ugarte
,
E. R.
, and
Salehi
,
S.
,
2022
, “
A Review on Well Integrity Issues for Underground Hydrogen Storage
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
042001
.
3.
Zhang
,
J. D.
,
Yu
,
F. T.
,
Zhang
,
T. T.
,
Yu
,
K. C.
,
Wang
,
X. M.
, and
Zhao
,
Q.
,
2020
, “
Natural Gas Market and Underground Gas Storage Development in China
,”
J. Energy Storage
,
29
, p.
101338
.
4.
Ma
,
L.
,
Wang
,
M.
,
Zhang
,
N.
,
Fan
,
P.
, and
Li
,
J.
,
2017
, “
A Variable-Parameter Creep Damage Model Incorporating the Effects of Loading Frequency for Rock Salt and Its Application in a Bedded Storage Cavern
,”
Rock Mech. Rock Eng.
,
50
(
9
), pp.
2495
2509
.
5.
Wang
,
J.
,
Zhang
,
Q.
,
Song
,
Z.
, and
Zhang
,
Y.
,
2020
, “
Creep Properties and Damage Constitutive Model of Salt Rock Under Uniaxial Compression
,”
Int. J. Dam. Mech.
,
29
(
6
), pp.
902
922
.
6.
Moazenian
,
A. R.
, and
Abedi
,
F.
,
2021
, “
Determining the Mechanical Characteristics of Prismatic Salt Rock Samples and Comparing Them With Cylindrical Ones
,”
J. Min. Sci.
,
57
(
3
), pp.
405
413
.
7.
Nes
,
O.
,
Fjaer
,
E.
, and
Tronvoll
,
J.
,
2012
, “
Drilling Time Reduction Through an Integrated Rock Mechanics Analysis
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032802
.
8.
Liang
,
K.
,
Xie
,
L.
,
He
,
B.
,
Zhao
,
P.
,
Zhang
,
Y.
, and
Hu
,
W.
,
2021
, “
Effects of Grain Size Distributions on the Macro-Mechanical Behavior of Rock Salt Using Micro-Based Multiscale Methods
,”
Int. J. Rock Mech. Min. Sci.
,
138
, p.
104592
.
9.
Daneshfar
,
J.
,
Hughes
,
R. G.
, and
Civan
,
F.
,
2009
, “
Feasibility Investigation and Modeling Analysis of CO(2) Sequestration in Arbuckle Formation Utilizing Salt Water Disposal Wells
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
023301
.
10.
Jongpradist
,
P.
,
Tunsakul
,
J.
,
Kongkitkul
,
W.
,
Fadsiri
,
N.
,
Arangelovski
,
G.
, and
Youwai
,
S.
,
2015
, “
High Internal Pressure Induced Fracture Patterns in Rock Masses Surrounding Caverns: Experimental Study Using Physical Model Tests
,”
Eng. Geol.
,
197
, pp.
158
171
.
11.
Chen
,
X.
,
Zhang
,
Q.
,
Li
,
S.
, and
Liu
,
D.
,
2016
, “
Geo-Mechanical Model Testing for Stability of Underground Gas Storage in Halite During the Operational Period
,”
Rock Mech. Rock Eng.
,
49
(
7
), pp.
2795
2809
.
12.
Yin
,
H.
,
Ma
,
H.
,
Shi
,
X.
,
Li
,
H.
,
Ge
,
X.
, and
Gao
,
A.
,
2019
, “
Experimental Study on Repair Characteristics of Damaged Rock Salt of Underground Gas Storage
,”
J. Cent. South Univ.
,
26
(
8
), pp.
2185
2196
.
13.
Mohanty
,
S.
, and
Vandergrift
,
T.
,
2012
, “
Long Term Stability Evaluation of an Old Underground Gas Storage Cavern Using Unique Numerical Methods
,”
Tunn. Undergr. Space Technol.
,
30
, pp.
145
154
.
14.
Zhang
,
N.
,
Shi
,
X.
,
Wang
,
T.
,
Yang
,
C.
,
Liu
,
W.
,
Ma
,
H.
, and
Daemen
,
J. J. K.
,
2017
, “
Stability and Availability Evaluation of Underground Strategic Petroleum Reserve (SPR) Caverns in Bedded Rock Salt of Jintan, China
,”
Energy
,
134
, pp.
504
514
.
15.
Zhang
,
G.
,
Wang
,
Z.
,
Liu
,
J.
,
Li
,
Y.
,
Cui
,
Z.
,
Zhang
,
H.
,
Wang
,
L.
, and
Sui
,
L.
,
2020
, “
Stability of the Bedded Key Roof Above Abandoned Horizontal Salt Cavern Used for Underground Gas Storage
,”
Bull. Eng. Geol. Environ.
,
79
(
8
), pp.
4205
4219
.
16.
Li
,
P.
,
Li
,
Y.
,
Shi
,
X.
,
Zhao
,
A.
,
Hao
,
S.
,
Gong
,
X.
,
Jiang
,
S.
, and
Liu
,
Y.
,
2021
, “
Stability Analysis of U-Shaped Horizontal Salt Cavern for Underground Natural Gas Storage
,”
J. Energy Storage
,
38
, p.
102541
.
17.
Kushnir
,
R.
,
Ullmann
,
A.
, and
Dayan
,
A.
,
2012
, “
Thermodynamic Models for the Temperature and Pressure Variations Within Adiabatic Caverns of Compressed Air Energy Storage Plants
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
021901
.
18.
Ziolkowski
,
P.
,
Szewczuk-Krypa
,
N.
,
Butterweck
,
A.
,
Stajnke
,
M.
,
Głuch
,
S.
,
Drosińska-Komor
,
M.
,
Milewska
,
A.
, and
Głuch
,
J.
,
2022
, “
Comprehensive Thermodynamic Analysis of Steam Storage in a Steam Cycle in a Different Regime of Work: A Zero-Dimensional and Three-Dimensional Approach
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
050905
.
19.
Liu
,
W.
,
Zhang
,
Z.
,
Fan
,
J.
,
Jiang
,
D.
, and
Daemen
,
J. J. K.
,
2020
, “
Research on the Stability and Treatments of Natural Gas Storage Caverns With Different Shapes in Bedded Salt Rocks
,”
IEEE Access
,
8
, pp.
18995
19007
.
20.
Yin
,
H.
,
Yang
,
C.
,
Ma
,
H.
,
Shi
,
X.
,
Zhang
,
N.
,
Ge
,
X.
,
Li
,
H.
, and
Han
,
Y.
,
2020
, “
Stability Evaluation of Underground Gas Storage Salt Caverns With Micro-Leakage Interlayer in Bedded Rock Salt of Jintan, China
,”
Acta Geotech.
,
15
(
3
), pp.
549
563
.
21.
Zhang
,
X.
,
Liu
,
W.
,
Jiang
,
D.
,
Qiao
,
W.
,
Liu
,
E.
,
Zhang
,
N.
, and
Fan
,
J.
,
2021
, “
Investigation on the Influences of Interlayer Contents on Stability and Usability of Energy Storage Caverns in Bedded Rock Salt
,”
Energy
,
231
, p.
120968
.
22.
Bi
,
A.
,
Luo
,
Z.
,
Kong
,
Y.
, and
Zhao
,
L.
,
2020
, “
Comprehensive Weighted Matter-Element Extension Method for the Safety Evaluation of Underground Gas Storage
,”
Royal Soc. Open Sci.
,
7
(
4
), p.
191302
.
23.
Yu
,
W.
,
Huang
,
W.
,
Liu
,
H.
,
Wang
,
K.
,
Wen
,
K.
,
Gong
,
J.
, and
Zhang
,
M.
,
2020
, “
A Systematic Method for Assessing the Operating Reliability of the Underground Gas Storage in Multiple Salt Caverns
,”
J. Energy Storage
,
31
, p.
101675
.
24.
Shahmorad
,
Z.
,
Salarirad
,
H.
, and
Molladavoudi
,
H.
,
2016
, “
A Study on the Effect of Utilizing Different Constitutive Models in the Stability Analysis of an Underground Gas Storage Within a Salt Structure
,”
J. Nat. Gas Sci. Eng.
,
33
, pp.
808
820
.
25.
Wang
,
G.
,
Guo
,
K.
,
Christianson
,
M.
, and
Konietzky
,
H.
,
2011
, “
Deformation Characteristics of Rock Salt With Mudstone Interbeds Surrounding Gas and Oil Storage Cavern
,”
Int. J. Rock Mech. Min. Sci.
,
48
(
6
), pp.
871
877
.
26.
Liang
,
G.
,
Huang
,
X.
,
Peng
,
X.
,
Tian
,
Y.
, and
Yu
,
Y.
,
2016
, “
Investigation on the Cavity Evolution of Underground Salt Cavern Gas Storages
,”
J. Nat. Gas Sci. Eng.
,
33
, pp.
118
134
.
27.
Peng
,
J. H.
,
Zhou
,
J.
,
Liang
,
G. C.
,
Peng
,
C.
, and
Fang
,
S. J.
,
2022
, “
A Comprehensive Stability Evaluation Method of Multiple Salt Caverns Underground Gas Storage With Interlayers
,”
Pet. Sci. Technol.
,
40
(
13
), pp.
1600
1621
.
You do not currently have access to this content.