Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The formation and control of pollutants emitted from fuel combustion have always been a focal point in combustion chemistry. Key pollutants primarily include nitrogen oxides (NOx) and sulfur oxides (SOx), making it crucial to elucidate the formation processes of nitrogen and sulfur components during combustion for pollutant control. Due to the highly coupled evolution processes of both components, independent reaction mechanisms struggle to describe this process; thus, considering the interactions between them is significant for the evolution of nitrogen and sulfur components. This article investigates the promotional or inhibitory effects between nitrogen and sulfur components in fuel combustion experiments, with the magnitude of this interactive effect varying between 2% and 250%, contingent upon the equivalence ratio and the N/S ratio impacts. Additionally, from a microkinetic perspective, two mechanisms underlying N/S interactions are identified: direct and indirect interactions. Direct interaction involves the formation of NS radicals, primarily through direct reactions of nitrogen species (NOx/HCN/NHi, where i ranges from 0 to 3) with sulfur constituents (SOx/H2S). Conversely, indirect interaction alters the radical pool via the intervention of NO or SO2, subsequently influencing each other's reaction pathways. It is noted that the current reaction system is incomplete, lacking key reactions, while the kinetic parameters of some reactions are still contentious. Advanced theoretical calculations are needed to refine the N/S interaction reaction model, to provide more accurate predictions for nitrogen and sulfur pollutant levels.

References

1.
So
,
S. M.
,
Kibet
,
D.
,
Woo
,
T. K.
,
Kim
,
S. J.
, and
Shin
,
J.-H.
,
2023
, “
Prediction of SOx-NOx Emission in Coal-Fired Power Plant Using Deep Neural Network
,”
Machines
,
11
(
12
), p.
1042
.
2.
Asghar
,
U.
,
Rafiq
,
S.
,
Anwar
,
A.
,
Iqbal
,
T.
,
Ahmed
,
A.
,
Jamil
,
F.
,
Khurram
,
M. S.
, et al
,
2021
, “
Review on the Progress in Emission Control Technologies for the Abatement of CO2, SOx and NOx From Fuel Combustion
,”
J. Environ. Chem. Eng.
,
9
(
5
), p.
106064
.
3.
Hoang
,
A. T.
,
Tran
,
V. D.
,
Dong
,
V. H.
, and
Le
,
A. T.
,
2022
, “
An Experimental Analysis on Physical Properties and Spray Characteristics of an Ultrasound-Assisted Emulsion of Ultra-Low-Sulphur Diesel and Jatropha-Based Biodiesel
,”
J. Mar. Eng. Technol.
,
21
(
2
), pp.
73
81
.
4.
Sharma
,
P.
,
Chhillar
,
A.
,
Said
,
Z.
,
Huang
,
Z.
,
Nguyen
,
V. N.
,
Nguyen
,
P. Q. P.
, and
Nguyen
,
X. P.
,
2022
, “
Experimental Investigations on Efficiency and Instability of Combustion Process in a Diesel Engine Fueled With Ternary Blends of Hydrogen Peroxide Additive/Biodiesel/Diesel
,”
Energy Sources, Part A
,
44
(
3
), pp.
5929
5950
.
5.
Meng
,
X.
,
Rokni
,
E.
,
Zhou
,
W.
,
Qi
,
H.
,
Sun
,
R.
, and
Levendis
,
Y. A.
,
2020
, “
Emissions From Oxy-Combustion of Raw and Torrefied Biomass
,”
ASME J. Energy Resour. Technol
,
142
(
12
), p.
122307
.
6.
Rashwan
,
S. S.
,
Abdelkader
,
B.
,
Abdalmonem
,
A.
,
Abou-Arab
,
T. W.
,
Nemitallah
,
M. A.
,
Habib
,
M. A.
, and
Ibrahim
,
A. H.
,
2022
, “
Experimental and Statistical ANOVA Analysis on Combustion Stability of CH4/O2/CO2 in a Partially Premixed Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol
,
144
(
6
), p.
062301
.
7.
Meng
,
X.
,
Zhou
,
W.
,
Rokni
,
E.
,
Yang
,
X.
, and
Levendis
,
Y. A.
,
2021
, “
Evolution of Gases From the Pyrolysis of Raw and Torrefied Biomass and From the Oxy-Combustion of Their Bio-Chars
,”
ASME J. Energy Resour. Technol
,
144
(
2
), p.
021901
.
8.
Glarborg
,
P.
,
2019
, “
Detailed Kinetic Mechanisms of Pollutant Formation in Combustion Processes
,”
Comput. Aided Chem. Eng.
,
45
, pp.
603
645
.
9.
Levy
,
A.
,
1982
, “
Unresolved Problems in SOx, NOx, Soot Control in Combustion
,”
Symp. (Int.) Combust.
,
19
(
1
), pp.
1223
1242
.
10.
Schofield
,
K.
,
2001
, “
The Kinetic Nature of Sulfur's Chemistry in Flames
,”
Combust. Flame
,
124
(
1–2
), pp.
137
155
.
11.
Jeffries
,
J. B.
, and
Crosley
,
D. R.
,
1986
, “
Laser-Induced Fluorescence Detection of the NS Radical in Sulfur and Nitrogen Doped Methane Flames
,”
Combust. Flame
,
64
(
1
), pp.
55
64
.
12.
Hampartsoumian
,
E.
,
Nimmo
,
W.
, and
Gibbs
,
B.
,
2001
, “
Nitrogen Sulphur Interactions in Coal Flames
,”
Fuel
,
80
(
7
), pp.
887
897
.
13.
Hampartsoumian
,
E.
, and
Nimmo
,
W.
,
1995
, “
An Experimental Investigation of Sulphur-Nitrogen Interactions in Turbulent Spray Flames
,”
Combust. Sci. Technol.
,
110
(
1
), pp.
487
504
.
14.
Cortese-Krott
,
M. M.
,
Butler
,
A. R.
,
Woollins
,
J. D.
, and
Feelisch
,
M.
,
2016
, “
Inorganic Sulfur–Nitrogen Compounds: From Gunpowder Chemistry to the Forefront of Biological Signaling
,”
Dalton Trans.
,
45
(
14
), pp.
5908
5919
.
15.
Ajdari
,
S.
,
Normann
,
F.
,
Andersson
,
K.
, and
Johnsson
,
F.
,
2015
, “
Modeling the Nitrogen and Sulfur Chemistry in Pressurized Flue gas Systems
,”
Ind. Eng. Chem. Res.
,
54
(
4
), pp.
1216
1227
.
16.
Glarborg
,
P.
,
2007
, “
Hidden Interactions—Trace Species Governing Combustion and Emissions
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
77
98
.
17.
Russell
,
S. H.
, and
Roberts
,
J. E.
,
1985
, “
Oxides of Nitrogen: Formation and Control in Resource Recovery Facilities
,”
ASME J. Energy Resour. Technol
,
107
(
2
), pp.
284
288
.
18.
Petrova
,
M. V.
, and
Williams
,
F. A.
,
2006
, “
A Small Detailed Chemical-Kinetic Mechanism for Hydrocarbon Combustion
,”
Combust. Flame
,
144
(
3
), pp.
526
544
.
19.
Douglas
,
C. M.
,
Martz
,
T. D.
,
Steele
,
R. C.
,
Noble
,
D. R.
,
Emerson
,
B. L.
, and
Lieuwen
,
T. C.
,
2023
, “
Pollutant Emissions Reporting and Performance Considerations for Ammonia-Blended Fuels in Gas Turbines
,”
Turbo Expo: Power for Land, Sea, and Air
,
Boston, MA
,
June 26–30
.
20.
Anthony
,
E. J.
, and
Lu
,
Y.
,
1998
, “
Relationship Between SO2 and Other Pollutant Emissions From Fluidized-Bed Combustion
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
3093
3101
.
21.
Bui
,
V. G.
,
Bui
,
T. M. T.
,
Nguyen
,
M. T.
,
Do
,
P. N.
,
Tran
,
N. A. H.
,
Le
,
T. T.
, and
Hoang
,
A. T.
,
2024
, “
Enhancing the Performance of Syngas-Diesel Dual-Fuel Engines by Optimizing Injection Regimes: From Comparative Analysis to Control Strategy Proposal
,”
Process Saf. Environ. Prot.
,
186
, pp.
1034
1052
.
22.
Glarborg
,
P.
,
Jensen
,
A.
, and
Johnsson
,
J. E.
,
2003
, “
Fuel Nitrogen Conversion in Solid Fuel Fired Systems
,”
Prog. Energy Combust. Sci.
,
29
(
2
), pp.
89
113
.
23.
Hill
,
S.
, and
Smoot
,
L. D.
,
2000
, “
Modeling of Nitrogen Oxides Formation and Destruction in Combustion Systems
,”
Prog. Energy Combust. Sci.
,
26
(
4–6
), pp.
417
458
.
24.
Miller
,
J. A.
, and
Bowman
,
C. T.
,
1989
, “
Mechanism and Modeling of Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
15
(
4
), pp.
287
338
.
25.
Kramlich
,
J. C.
,
Cole
,
J. A.
,
McCarthy
,
J. M.
,
Lanier
,
W. S.
, and
McSorley
,
J. A.
,
1989
, “
Mechanisms of Nitrous Oxide Formation in Coal Flames
,”
Combust. Flame
,
77
(
3–4
), pp.
375
384
.
26.
Chen
,
G.
,
Shang
,
J.
, and
Wen
,
C.-Y.
,
1981
, “
NOx Emission From Combustors: A State-of-the-Art Review
,” OSTI.GOV Technical Report No. DOE/MC/11284-166; ON: DE81026231.
27.
Smoot
,
L. D.
, and
Smith
,
P. J.
,
2013
,
Coal Combustion and Gasification
,
Springer Science & Business Media
,
New York
.
28.
Pels
,
J.
,
Wojtowicz
,
M.
,
Kapteijn
,
F.
, and
Moulijn
,
J.
,
1995
, “
Trade-Off Between NOx and N2O in Fluidized-Bed Combustion of Coals
,”
Energy Fuels
,
9
(
5
), pp.
743
752
.
29.
Xu
,
H.
,
Smoot
,
L.
, and
Hill
,
S.
,
1999
, “
Computational Model for NOx Reduction by Advanced Reburning
,”
Energy Fuels
,
13
(
2
), pp.
411
420
.
30.
Zhou
,
H.
,
Li
,
Y.
,
Li
,
N.
,
Qiu
,
R.
, and
Cen
,
K.
,
2019
, “
Conversions of Fuel-N to NO and N2O During Devolatilization and Char Combustion Stages of a Single Coal Particle Under Oxy-Fuel Fluidized Bed Conditions
,”
J. Energy Inst.
,
92
(
2
), pp.
351
363
.
31.
Westlye
,
F. R.
,
Ivarsson
,
A.
, and
Schramm
,
J.
,
2013
, “
Experimental Investigation of Nitrogen Based Emissions From an Ammonia Fueled SI-Engine
,”
Fuel
,
111
, pp.
239
247
.
32.
Zhang
,
Z.
,
Chen
,
D.
,
Li
,
Z.
,
Cai
,
N.
, and
Imada
,
J.
,
2017
, “
Development of Sulfur Release and Reaction Model for Computational Fluid Dynamics Modeling in Sub-Bituminous Coal Combustion
,”
Energy Fuels
,
31
(
2
), pp.
1383
1398
.
33.
Baruah
,
B.
, and
Khare
,
P.
,
2007
, “
Pyrolysis of High Sulfur Indian Coals
,”
Energy Fuels
,
21
(
6
), pp.
3346
3352
.
34.
Mathieu
,
O.
,
Deguillaume
,
F.
, and
Petersen
,
E. L.
,
2014
, “
Effects of H2S Addition on Hydrogen Ignition Behind Reflected Shock Waves: Experiments and Modeling
,”
Combust. Flame
,
161
(
1
), pp.
23
36
.
35.
Glarborg
,
P.
,
Halaburt
,
B.
,
Marshall
,
P.
,
Guillory
,
A.
,
Troe
,
J.
,
Thellefsen
,
M.
, and
Christensen
,
K.
,
2014
, “
Oxidation of Reduced Sulfur Species: Carbon Disulfide
,”
J. Phys. Chem. A
,
118
(
34
), pp.
6798
6809
.
36.
Glarborg
,
P.
, and
Marshall
,
P.
,
2013
, “
Oxidation of Reduced Sulfur Species: Carbonyl Sulfide
,”
Int. J. Chem. Kinet.
,
45
(
7
), pp.
429
439
.
37.
Ma
,
H.
,
Lv
,
S.
,
Zhou
,
L.
,
Chew
,
J. W.
, and
Zhao
,
J.
,
2020
, “
Detailed Kinetic Modeling of H2S Formation During Fuel-Rich Combustion of Pulverized Coal
,”
Fuel Process. Technol.
,
199
, p.
106276
.
38.
Hindiyarti
,
L.
,
Glarborg
,
P.
, and
Marshall
,
P.
,
2007
, “
Reactions of SO3 With the O/H Radical Pool Under Combustion Conditions
,”
J. Phys. Chem. A
,
111
(
19
), pp.
3984
3991
.
39.
Wang
,
X.
,
Tan
,
H.
,
Niu
,
Y.
,
Chen
,
E.
, and
Xu
,
T.
,
2010
, “
Kinetic Investigation of the SO2 Influence on NO Reduction Processes During Methane Reburning
,”
Asia Pac. J. Chem. Eng.
,
5
(
6
), pp.
902
908
.
40.
Wei
,
X.
,
Han
,
X.
,
Schnell
,
U.
,
Maier
,
J.
,
Wörner
,
H.
, and
Hein
,
K. R. G.
,
2003
, “
The Effect of HCl and SO2 on NOx Formation in Coal Flames
,”
Energy Fuels
,
17
(
5
), pp.
1392
1398
.
41.
Miccio
,
F.
,
Löffler
,
G.
,
Wargadalam
,
V. J.
, and
Winter
,
F.
,
2001
, “
The Influence of SO2 Level and Operating Conditions on NOx and N2O Emissions During Fluidised Bed Combustion of Coals
,”
Fuel
,
80
(
11
), pp.
1555
1566
.
42.
Wendt
,
J.
, and
Ekmann
,
J.
,
1975
, “
Effect of Fuel Sulfur Species on Nitrogen Oxide Emissions From Premixed Flames
,”
Combust. Flame
,
25
, pp.
355
360
.
43.
Pfefferle
,
L. D.
, and
Churchill
,
S. W.
,
1989
, “
Effect of Fuel Sulfur on Nitrogen Oxide Formation in a Thermally Stabilized Plug-Flow Burner
,”
Ind. Eng. Chem. Res.
,
28
(
7
), pp.
1004
1010
.
44.
Nimmo
,
W.
,
Hampartsoumian
,
E.
,
Hughes
,
K.
, and
Tomlin
,
A.
,
1998
, “
Experimental and Kinetic Studies on the Effect of Sulfur-Nitrogen Interactions on No Formation in Flames
,”
Symp. (Int.) Combust.
,
27
(
1
), pp.
1419
1426
.
45.
Wendt
,
J.
,
Morcomb
,
J.
, and
Corley
,
T.
,
1979
, “
Influence of Fuel Sulfur on Fuel Nitrogen Oxidation Mechanisms
,”
Symp. (Int.) Combust.
,
17
(
1
), pp.
671
678
.
46.
Corley
,
T. L.
, and
Wendt
,
J. O. L.
,
1984
, “
Postflame Behavior of Nitrogenous Species in the Presence of Fuel Sulfur: II. Rich, CH4/He/O2 Flames
,”
Combust. Flame
,
58
(
2
), pp.
141
152
.
47.
Hughes
,
K. J.
,
Tomlin
,
A. S.
,
Dupont
,
V. A.
, and
Pourkashanian
,
M.
,
2002
, “
Experimental and Modelling Study of Sulfur and Nitrogen Doped Premixed Methane Flames at Low Pressure
,”
Faraday Discuss.
,
119
(
1
), pp.
337
352
.
48.
Hughes
,
K. J.
,
Turányi
,
T.
,
Clague
,
A. R.
, and
Pilling
,
M. J.
,
2001
, “
Development and Testing of a Comprehensive Chemical Mechanism for the Oxidation of Methane
,”
Int. J. Chem. Kinet.
,
33
(
9
), pp.
513
538
.
49.
Alzueta
,
M. U.
,
Bilbao
,
R.
, and
Glarborg
,
P.
,
2001
, “
Inhibition and Sensitization of Fuel Oxidation by SO2
,”
Combust. Flame
,
127
(
4
), pp.
2234
2251
.
50.
Glarborg
,
P.
,
Kubel
,
D.
,
Dam-Johansen
,
K.
,
Chiang
,
H. M.
, and
Bozzelli
,
J. W.
,
1996
, “
Impact of SO2 and NO on CO Oxidation Under Post-Flame Conditions
,”
Int. J. Chem. Kinet.
,
28
(
10
), pp.
773
790
.
51.
Beér
,
J. M.
,
2000
, “
Combustion Technology Developments in Power Generation in Response to Environmental Challenges
,”
Prog. Energy Combust. Sci.
,
26
(
4–6
), pp.
301
327
.
52.
Jiang
,
Y.
,
Yang
,
X.
, and
Ma
,
H.
,
2023
, “
Modelling the Mechanism of Sulphur Evolution in the Coal Combustion Process: The Effect of Sulphur-Nitrogen Interactions and Excess Air Coefficients
,”
Processes
,
11
(
5
), p.
1518
.
53.
Wang
,
M.
,
Pang
,
Z.
,
Wei
,
G.
,
Wang
,
J.
,
Wang
,
G.
,
Jia
,
G.
,
Zhang
,
L.
, and
Guan
,
J.
,
2023
, “
Research on Oxy-Fuel Combustion Characteristics of Two Typical Chinese Coals
,”
Processes
,
11
(
7
), p.
1933
.
54.
Malik
,
M. J.
,
2019
, “
Formation and Removal of SOx and NOx in Pressurized Oxy-Fuel Coal Combustion
,” M.Sc. thesis, University of Waterloo, Waterloo, Ontario, Canada.
55.
Fleig
,
D.
,
Andersson
,
K.
,
Normann
,
F.
, and
Johnsson
,
F.
,
2011
, “
SO3 Formation Under Oxyfuel Combustion Conditions
,”
Ind. Eng. Chem. Res.
,
50
(
14
), pp.
8505
8514
.
56.
Fleig
,
D.
,
Alzueta
,
M. U.
,
Normann
,
F.
,
Abián
,
M.
,
Andersson
,
K.
, and
Johnsson
,
F.
,
2013
, “
Measurement and Modeling of Sulfur Trioxide Formation in a Flow Reactor Under Post-Flame Conditions
,”
Combust. Flame
,
160
(
6
), pp.
1142
1151
.
57.
Choudhury
,
N. N.
, and
Padak
,
B.
,
2017
, “
An Investigation of the Interaction Between NOx and SOx in Oxy-Combustion
,”
Environ. Sci. Technol.
,
51
(
21
), pp.
12918
12924
.
58.
Dagaut
,
P.
,
Lecomte
,
F.
,
Mieritz
,
J.
, and
Glarborg
,
P.
,
2003
, “
Experimental and Kinetic Modeling Study of the Effect of NO and SO2 on the Oxidation of CO-H2 Mixtures
,”
Int. J. Chem. Kinet.
,
35
(
11
), pp.
564
575
.
59.
Cerru
,
F. G.
,
Kronenburg
,
A.
, and
Lindstedt
,
R. P.
,
2006
, “
Systematically Reduced Chemical Mechanisms for Sulfur Oxidation and Pyrolysis
,”
Combust. Flame
,
146
(
3
), pp.
437
455
.
60.
Cerru
,
F G..
,
Kronenburg
,
A.
, and
Lindstedt
,
R. P.
,
2005
, “
A Systematically Reduced Reaction Mechanism for Sulphur Oxidation
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1227
1235
.
61.
Tseregounis
,
S. I.
, and
Smith
,
O. I.
,
1985
, “
An Experimental Investigation of Fuel Sulfur-Fuel Nitrogen Interactions in Low-Pressure Premixed Flames
,”
Symp. (Int.) Combust.
,
20
(
1
), pp.
761
768
.
62.
Chagger
,
H. K.
,
Goddard
,
P. R.
,
Murdoch
,
P.
, and
Williams
,
A.
,
1991
, “
Effect of SO2 on the Reduction of NOx by Reburning With Methane
,”
Fuel
,
70
(
10
), pp.
1137
1142
.
63.
Chen
,
A. T.
,
Malte
,
P. C.
, and
Thornton
,
M. M.
,
1985
, “
Sulfur-Nitrogen Interaction in Stirred Flames
,”
Symp. (Int.) Combust.
,
20
(
1
), pp.
769
777
.
64.
Hu
,
W.
,
Chen
,
Y.
,
Yang
,
K.
,
Yu
,
H.
,
Wang
,
S.
, and
Yao
,
L.
,
2021
, “
Calculation of Anharmonic Effect on the Reactions of Small Sulfur-Containing Molecules With NO/NO2 in Combustion
,”
J. Chin. Chem. Soc.
,
68
(
10
), pp.
1829
1841
.
65.
Hassani
,
N.
,
Mousavipour
,
S. H.
, and
Mohajeri
,
A.
,
2020
, “
Kinetics and Mechanism of the NH (X3Σ–)+ SO (X3Σ–) Reaction: A Theoretical Approach
,”
J. Phys. Chem. A
,
124
(
33
), pp.
6585
6600
.
66.
Kaur
,
R.
, and
Vikas
,
2018
, “
Conflict in the Mechanism and Kinetics of the Barrierless Reaction Between SH and NO2 Radicals
,”
J. Phys. Chem. A
,
122
(
8
), pp.
1926
1937
.
67.
Tomlin
,
A. S.
,
2006
, “
The use of Global Uncertainty Methods for the Evaluation of Combustion Mechanisms
,”
Reliab. Eng. Syst. Saf.
,
91
(
10–11
), pp.
1219
1231
.
68.
Ma
,
H.
,
Shi
,
S.
,
Zhou
,
L.
, and
Xu
,
X.
,
2024
, “
Detailed Kinetics Modeling of Sulfur Species Evolution in Alternating Reducing/Oxidizing Atmosphere
,”
J. Energy Inst.
,
114
, p.
101580
.
You do not currently have access to this content.