Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

To ensure the economic feasibility of shale oil and gas exploitation, large-scale hydraulic fracturing is essential for increasing recovery volumes by creating more efficient conductivity channels. However, China's continental shale reservoirs present complex geological conditions, making optimization through traditional hydraulic fracturing challenging. Thus, substituting CO2 for water in fracturing fluids to enhance shale reservoirs has garnered significant interest. An orthogonal experimental design was implemented to identify the optimal parameters for CO2 composite fracturing. Analysis of single-factor experiments led to the selection of four key variables: slickwater volume, slickwater displacement, preflush liquid CO2 volume, and proppant addition volume, resulting in 16 experimental configurations. Using numerical simulation of tight oil shale reservoirs, the effective stimulated reservoir volume for each parameter combination was calculated. Variance analysis revealed that increased slickwater volume significantly enhances fracture initiation and propagation. While variations in slickwater displacement and preflush liquid CO2 volume influence fracture network morphology and complexity, they have a lesser effect on the stimulated volume compared to slickwater volume. Proppant quantity primarily affects fracture conductivity with minimal impact on stimulated volume. This research underpins the optimization of constructional parameters for CO2 composite fracturing.

References

1.
Xu
,
Y.
,
Lei
,
Q.
,
Chen
,
M.
,
Wu
,
Q.
,
Yang
,
N.
,
Weng
,
D.
,
Li
,
D.
, and
Jiang
,
H.
,
2018
, “
Progress and Development of Volume Stimulation Techniques
,”
Pet. Explor. Dev.
,
45
(
5
), pp.
932
947
.
2.
Lei
,
Q.
,
Weng
,
D.
,
Guan
,
B.
,
Mu
,
L.
,
Xu
,
Y.
,
Wang
,
Z.
,
Guo
,
Y.
, and
Li
,
S.
,
2020
, “
A Novel Approach of Tight Oil Reservoirs Stimulation Based on Fracture Controlling Optimization and Design
,”
Pet. Explor. Dev.
,
47
(
3
), pp.
632
641
.
3.
Zhou
,
D.
,
Zheng
,
P.
,
Peng
,
J.
, and
He
,
P.
,
2015
, “
Induced Stress and Interaction of Fractures During Hydraulic Fracturing in Shale Formation
,”
ASME J. Energy Res. Technol.
,
137
(
6
), p.
062902
.
4.
Zhang
,
N.
, and
Guo
,
B.
,
2021
, “
Use of Mathematical Model to Predict the Maximum Permissible Stage Injection Time for Mitigating Frac-Driven Interactions in Hydraulic-Fracturing Shale Gas/Oil Wells
,”
ASME J. Energy Res. Technol.
,
143
(
8
), p.
082901
.
5.
Qin
,
J.
,
Xu
,
Y.
,
Tang
,
Y.
,
Liang
,
R.
,
Zhong
,
Q.
,
Yu
,
W.
, and
Sepehrnoori
,
K.
,
2022
, “
Impact of Complex Fracture Networks on Rate Transient Behavior of Wells in Unconventional Reservoirs Based on Embedded Discrete Fracture Model
,”
ASME J. Energy Res. Technol.
,
144
(
8
), p.
083007
.
6.
Guo
,
D.
,
Zhao
,
Y.
,
Guo
,
Z.
,
Cui
,
X.
, and
Huang
,
B.
,
2020
, “
Theoretical and Experimental Determination of Proppant Crushing Rate and Fracture Conductivity
,”
ASME J. Energy Res. Technol.
,
142
(
10
), p.
103005
.
7.
He
,
Y.
,
Qiao
,
Y.
,
Qin
,
J.
,
Tang
,
Y.
,
Wang
,
Y.
, and
Chai
,
Z.
,
2022
, “
A Novel Method to Enhance Oil Recovery by Inter-fracture Injection and Production Through the Same Multi-fractured Horizontal Well
,”
ASME J. Energy Res. Technol.
,
144
(
4
), p.
043005
.
8.
Sinal
,
M. L.
, and
Lancaster
,
G.
,
1987
, “
Liquid CO2 Fracturing: Advantages and Limitations
,”
J. Can. Pet. Technol.
,
26
(
5
).
9.
Sampath
,
K. H. S. M.
,
Perera
,
M. S. A.
,
Ranjith
,
P. G.
,
Matthai
,
S. K.
,
Rathnaweera
,
T.
,
Zhang
,
G.
, and
Tao
,
X.
,
2017
, “
CH4CO2 Gas Exchange and Supercritical CO2 Based Hydraulic Fracturing as CBM Production-Accelerating Techniques: A Review
,”
J. CO2 Util.
,
22
, pp.
212
230
.
10.
Ranjith
,
P. G.
,
Zhang
,
C. P.
, and
Zhang
,
Z. Y.
,
2019
, “
Experimental Study of Fracturing Behaviour in Ultralow Permeability Formations: A Comparison Between CO2 and Water Fracturing
,”
Eng. Fract. Mech.
,
217
, p.
106541
.
11.
Fang
,
C.
,
Chen
,
W.
, and
Amro
,
M.
,
2014
, “
Simulation Study of Hydraulic Fracturing Using Super Critical CO2 in Shale
,”
Abu Dhabi International Petroleum Exhibition and Conference
,
Abu Dhabi, UAE
,
Nov. 13
.
12.
Zheng
,
S.
, and
Sharma
,
M. M.
,
2020
, “
A Comparison of Hydraulic Fracture Propagation and Well Productivity Using Different Energized Fracturing Fluids
,”
54th U.S. Rock Mechanics/Geomechanics Symposium
,
Virtual Online
,
June 28–July 1
.
13.
Ishida
,
T.
,
Aoyagi
,
K.
,
Niwa
,
T.
,
Chen
,
Y.
,
Murata
,
S.
,
Chen
,
Q.
, and
Nakayama
,
Y.
,
2012
, “
Acoustic Emission Monitoring of Hydraulic Fracturing Laboratory Experiment With Supercritical and Liquid CO2
,”
Geophys. Res. Lett.
,
39
(
16
), p.
L16309
.
14.
Mazza
,
R. L.
,
2001
, “
Liquid-Free CO2/Sand Stimulations: An Overlooked Technology—Production Update
,”
SPE Eastern Regional Meeting
,
Canton, OH
,
Oct. 17–19
.
15.
Gao
,
F.
,
Tang
,
L.
,
Zhou
,
K.
,
Zhang
,
Y.
, and
Ke
,
B.
,
2018
, “
Mechanism Analysis of Liquid Carbon Dioxide Phase Transition for Fracturing Rock Masses
,”
Energies
,
11
(
11
), p.
2909
.
16.
Clarkson
,
C. R.
,
Qanbari
,
F.
,
Nobakht
,
M.
, and
Heffner
,
L.
,
2013
, “
Incorporating Geomechanical and Dynamic Hydraulic-Fracture-Property Changes Into Rate-Transient Analysis: Example From the Haynesville Shale
,”
SPE Reservoir Eval. Eng.
,
16
(
3
), pp.
303
316
.
17.
Chen
,
L.
,
Chang
,
Y.
, and
Gao
,
J.
,
2008
, “
Application of Hybrid Fracturing Technology in Changqing ‘Three Low’ Oilfields
,”
Well Testing
,
17
(
5
), pp.
60
62
.
18.
Zhang
,
X.
,
Lu
,
Y.
,
Tang
,
J.
,
Zhou
,
Z.
, and
Liao
,
Y.
,
2017
, “
Experimental Study on Fracture Initiation and Propagation in Shale Using Supercritical Carbon Dioxide Fracturing
,”
Fuel
,
190
, pp.
370
378
.
19.
Gala
,
D.
,
AlTammar
,
M. J.
, and
Sharma
,
M. M.
,
2023
, “
Field-Scale Modeling of Fracturing With Slickwater, N2, CO2 and Foams—A Fundamental Investigation
,”
57th U.S. Rock Mechanics/Geomechanics Symposium
,
Atlanta, GA
,
June 25–28
.
20.
Yang
,
H.
,
Wang
,
L.
,
Yang
,
C.
,
Guo
,
W.
,
Bi
,
Z.
, and
Guo
,
Y.
,
2023
, “
Experimental Investigation on Different Effects of Fracturing Fluids on Mechanical Properties and Failure Mechanism of Continental Shale
,”
Int. J. Rock Mech. Min. Sci.
,
164
, p.
105362
.
21.
Xu
,
W.
,
2023
, “
Numerical Simulation of Fracture Propagation of SRV Fracturing in Unconventional Reservoirs
,” PhD thesis,
Southwest Petroleum University
,
Chengdu, China
.
You do not currently have access to this content.