Abstract

Distributed energy technology is an essential pathway for future advancements in the field of energy technology. In the present study, organic Rankine cycle (ORC) is integrated with solid oxide fuel cell (SOFC)-gas turbine (GT) hybrid power system. The conventional metrics employed for assessing the performance of SOFCs, gas turbines, and organic Rankine cycles, such as voltage and gross real efficiencies, have some limitations as indices of merit. Contemporary second law concepts and economic and environmental analysis have been used to enhance hybrid power system evaluation. R1233zd(E) has been selected as the ORC working fluid. The outcomes reveal that, under certain conditions, the present configuration may reach 55.67% energy efficiency and 53.55% exergy efficiency. Economic and environmental analysis shows that the hybrid system's total cost rate and Emissions of CO2 gas (EMI) under design conditions are 36.09 $/h and 355.8 kg/MWh, respectively. Thermodynamic evaluation of present SOFC-GT-ORC configuration shows 11.72% improvement in exergy efficiency compared to hybrid SOFC-GT cycle. Consequently, the hybrid SOFC-GT-ORC system is far better than the hybrid SOFC-GT system. In the future, other ORC fluids like R123, R601a, and R245fa can be used as ORC fluids.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Nathanael
,
A. J.
,
Kannaiyan
,
K.
,
Kunhiraman
,
A. K.
,
Ramakrishna
,
S.
, and
Kumaravel
,
V.
,
2021
, “
Global Opportunities and Challenges on Net-Zero CO2 Emissions Towards a Sustainable Future
,”
React. Chem. Eng.
,
6
(
12
), pp.
2226
2247
.
2.
Tetteh
,
D. A.
, and
Salehi
,
S.
,
2023
, “
The Blue Hydrogen Economy: A Promising Option for the Near-to-Mid-Term Energy Transition
,”
ASME J. Energy Resour. Technol.
,
145
(
4
), p.
042701
.
3.
Iyengar
,
A. K. S.
,
Koeppel
,
B. J.
,
Keairns
,
D. L.
,
Woods
,
M. C.
,
Hackett
,
G. A.
, and
Shultz
,
T. R.
,
2021
, “
Performance of a Natural Gas Solid Oxide Fuel Cell System With and Without Carbon Capture
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042104
.
4.
Yadav
,
A. K.
,
Sinha
,
S.
, and
Kumar
,
A.
,
2024
, “
Advancements in Composite Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells: A Comprehensive Review
,”
Int. J. Hydrogen Energy
,
59
, pp.
1080
1093
.
5.
Kumar Yadav
,
A.
,
Sinha
,
S.
, and
Kumar
,
A.
,
2023
, “
Comprehensive Review on Performance Assessment of Solid Oxide Fuel Cell-Based Hybrid Power Generation System
,”
Therm. Sci. Eng. Prog.
,
46
, p.
102226
.
6.
Leone
,
P.
, and
Lanzini
,
A.
,
2013
, “
Experimental Modeling of Transients in Large SOFC Systems
,”
ASME J. Fuel Cell Sci. Technol.
,
10
(
1
), p.
011004
.
7.
Kang
,
I.
,
Yoon
,
S.
,
Bae
,
G.
,
Kim
,
J.
,
Baek
,
S.
, and
Bae
,
J.
,
2010
, “
The Tests of 1 KW e Diesel Reformer and Solid Oxide Fuel Cell System
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
3
), p.
031012
.
8.
Li
,
S.
,
Zhang
,
Z.
,
Li
,
G.
, and
Bai
,
S.
,
2023
, “
Influence of Off Gas Recirculation on the Intermediate Temperature SOFC With Partial Oxidation Reformer
,”
ASME J. Electrochem. Energy Convers. Storage
,
20
(
3
), p.
031001
.
9.
Osman
,
S.
,
Ahmed
,
K.
, and
Ahmed
,
M.
,
2022
, “
Performance of Two-Dimensional Functionally Graded Anode Supported Solid-Oxide Fuel Cells
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
070911
.
10.
Bagherian
,
M. A.
, and
Mehranzamir
,
K.
,
2020
, “
A Comprehensive Review on Renewable Energy Integration for Combined Heat and Power Production
,”
Energy Convers. Manage.
,
224
, p.
113454
.
11.
van Biert
,
L.
,
Visser
,
K.
, and
Aravind
,
P. V.
,
2020
, “
A Comparison of Steam Reforming Concepts in Solid Oxide Fuel Cell Systems
,”
Appl. Energy
,
264
, p.
114748
.
12.
Haynes
,
C.
, and
Wepfer
,
W. J.
,
2002
, “
Enhancing the Performance Evaluation and Process Design of a Commercial-Grade Solid Oxide Fuel Cell via Exergy Concepts
,”
ASME J. Energy Resour. Technol.
,
124
(
2
), pp.
95
104
.
13.
Dincer
,
I.
,
Rosen
,
M. A.
, and
Zamfirescu
,
C.
,
2009
, “
Exergetic Performance Analysis of a Gas Turbine Cycle Integrated With Solid Oxide Fuel Cells
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), p.
032001
.
14.
Ghilardi
,
A.
,
Frate
,
G. F.
,
Baccioli
,
A.
,
Ulivieri
,
D.
,
Ferrari
,
L.
,
Desideri
,
U.
,
Cosi
,
L.
,
Amidei
,
S.
, and
Michelassi
,
V.
,
2023
, “
Techno-Economic Comparison of Several Technologies for Waste Heat Recovery of Gas Turbine Exhausts
,”
ASME J. Eng. Gas Turbines Power
,
145
(
5
), p.
051006
.
15.
Lai
,
H.
, and
Adams
,
T. A.
,
2024
, “
Eco-Technoeconomic Analyses of Natural Gas-Powered SOFC/GT Hybrid Plants Accounting for Long-Term Degradation Effects Via Pseudo-Steady-State Model Simulations
,”
ASME J. Electrochem. Energy Convers. Storage
,
21
(
2
), p.
021004
.
16.
Ding
,
X.
,
Lv
,
X.
, and
Weng
,
Y.
,
2021
, “
Fuel-Adaptability Analysis of Intermediate-Temperature-SOFC/Gas Turbine Hybrid System With Biomass Gas
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022104
.
17.
Sadeghi
,
S.
, and
Ameri
,
M.
,
2014
, “
Exergy Analysis of Photovoltaic Panels-Coupled Solid Oxide Fuel Cell and Gas Turbine-Electrolyzer Hybrid System
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
031201
.
18.
Mottaghizadeh
,
P.
,
Fardadi
,
M.
,
Jabbari
,
F.
, and
Brouwer
,
J.
,
2022
, “
Thermodynamic and Dynamic Analysis of a Wind-Powered Off-Grid Industrial Building Integrated With Solid Oxide Fuel Cell and Electrolyzer for Energy Management and Storage
,”
ASME J. Electrochem. Energy Convers. Storage
,
19
(
3
), p.
031003
.
19.
Kim
,
H. R.
, and
Kim
,
T. S.
,
2024
, “
Evaluation of Water-Cooling Effect in Hydrogen-Fed SOFC for High-Efficiency Combined System Design
,”
ASME J. Eng. Gas Turbines Power
,
146
(
4
), p.
041020
.
20.
Genovese
,
M.
,
Lucarelli
,
G.
, and
Fragiacomo
,
P.
,
2023
, “
Feasibility Analysis of a Fuel Cell-Based Tri-Generation Energy System via the Adoption of a Multi-Objective Optimization Tool
,”
ASME J. Energy Resour. Technol.
,
145
(
9
), p.
091401
.
21.
Fragiacomo
,
P.
,
De Lorenzo
,
G.
, and
Corigliano
,
O.
,
2018
, “
Performance Analysis of a Solid Oxide Fuel Cell-Gasifier Integrated System in Co-Trigenerative Arrangement
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092001
.
22.
Yang
,
X.
,
Zhao
,
H.
, and
Hou
,
Q.
,
2019
, “
Thermodynamic Performance Study of the SOFC–GT–RC System Fueled by LNG With CO2 Recovery
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122005
.
23.
Pirkandi
,
J.
,
Penhani
,
H.
, and
Maroufi
,
A.
,
2020
, “
Thermodynamic Analysis of the Performance of a Hybrid System Consisting of Steam Turbine, Gas Turbine and Solid Oxide Fuel Cell (SOFC-GT-ST)
,”
Energy Convers. Manage.
,
213
, p.
112816
.
24.
Stasiak
,
K.
,
Zioł´kowski
,
P.
, and
Mikielewicz
,
D.
,
2024
, “
Selected Aspects of Performance of Organic Rankine Cycles Incorporated Into Bioenergy With Carbon Capture and Storage Using Gasification of Sewage Sludge
,”
ASME J. Energy Resour. Technol.
,
146
(
3
), p.
030903
.
25.
Yan
,
D.
,
Yang
,
F.
,
Zhang
,
H.
,
Xu
,
Y.
,
Wang
,
Y.
, and
Li
,
J.
,
2022
, “
How to Quickly Evaluate the Thermodynamic Performance and Identify the Optimal Heat Source Temperature for Organic Rankine Cycles?
ASME J. Energy Resour. Technol.
,
144
(
11
), p.
112106
.
26.
Mitri
,
F. B.
,
Ponce
,
G.
, and
Anderson
,
K. R.
,
2023
, “
Compost Waste Heat to Power Organic Rankine Cycle Design and Analysis
,”
ASME J. Energy Resour. Technol.
,
145
(
10
), p.
100901
.
27.
Kumar
,
P.
, and
Singh
,
O.
,
2019
, “
Thermoeconomic Analysis of SOFC-GT-VARS-ORC Combined Power and Cooling System
,”
Int. J. Hydrogen Energy
,
44
(
50
), pp.
27575
27586
.
28.
Eisavi
,
B.
,
Chitsaz
,
A.
,
Hosseinpour
,
J.
, and
Ranjbar
,
F.
,
2018
, “
Thermo-Environmental and Economic Comparison of Three Different Arrangements of Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) Hybrid Systems
,”
Energy Convers. Manage.
,
168
(
Jan.
), pp.
343
356
.
29.
Beigzadeh
,
M.
,
Pourfayaz
,
F.
,
Ghazvini
,
M.
, and
Ahmadi
,
M. H.
,
2021
, “
Energy and Exergy Analyses of Solid Oxide Fuel Cell-Gas Turbine Hybrid Systems Fed by Different Renewable Biofuels: A Comparative Study
,”
J. Clean. Prod.
,
280
, p.
124383
.
30.
Ranjbar
,
F.
,
Chitsaz
,
A.
,
Mahmoudi
,
S. M. S.
,
Khalilarya
,
S.
, and
Rosen
,
M. A.
,
2014
, “
Energy and Exergy Assessments of a Novel Trigeneration System Based on a Solid Oxide Fuel Cell
,”
Energy Convers. Manage.
,
87
(
Apr. 2020
), pp.
318
327
.
31.
Emadi
,
M. A.
,
Chitgar
,
N.
,
Oyewunmi
,
O. A.
, and
Markides
,
C. N.
,
2020
, “
Working-Fluid Selection and Thermoeconomic Optimisation of a Combined Cycle Cogeneration Dual-Loop Organic Rankine Cycle (ORC) System for Solid Oxide Fuel Cell (SOFC) Waste-Heat Recovery
,”
Appl. Energy
,
261
, p.
114384
.
32.
Pan
,
M.
,
Zhang
,
K.
, and
Li
,
X.
,
2021
, “
Optimization of Supercritical Carbon Dioxide Based Combined Cycles for Solid Oxide Fuel Cell-Gas Turbine System: Energy, Exergy, Environmental and Economic Analyses
,”
Energy Convers. Manage.
,
248
, p.
114774
.
You do not currently have access to this content.