Abstract

Amid climate change, reducing reliance on fossil fuels and transitioning to renewable energy sources is crucial. Ammonia, a carbon-free and renewable fuel, shows significant potential as an alternative energy source. By incorporating hydrogen as an additive, its flammability can be enhanced to suit existing spark-ignition engines. However, understanding the characteristics of nitrogen pollutant emissions (i.e., NOx, which includes NO and NO2, and N2O) from ammonia–hydrogen combustion is challenging due to contributions from both fuel-borne and air-borne nitrogen. However, understanding the characteristics of nitrogen pollutant emissions from ammonia–hydrogen combustion is challenging due to contributions from both fuel-borne and air-borne nitrogen. Therefore, a comprehensive understanding of fuel-borne nitrogen pollutants during ammonia–hydrogen combustion is essential. This study focuses on investigating fuel-borne nitrogen pollutants in argon–oxygen atmosphere, thereby eliminating nitrogen from the oxidizer and its role in thermal NOx formation. The research examines the formation and evolution of fuel-borne nitrogen pollutants during ammonia–hydrogen combustion under engine-like conditions. Results indicate that fuel-borne nitrogen pollutants act as intermediates, potentially originating from chemical equilibrium. While fuel NO predominantly forms in the burning zone, it undergoes a reduction in the burned zone. N2O, absent in thermal NOx mechanisms, shows significant concentrations in the burning zone and is mostly converted to N2, leading to limited N2O in the final fuel-borne nitrogen pollutant concentration. Lean-burn conditions, hydrogen addition, and oxyfuel combustion promote fuel NOx formation. Additionally, the equivalence ratio affects the ammonia–hydrogen premixed flame structure due to the de-NOx effect of ammonia. Overall, these findings highlight that fuel-borne nitrogen pollutant mechanisms differ from thermal NOx mechanisms, necessitating specially designed reduction technologies for clean spark-ignition engines.

References

1.
Bulkeley
,
H.
,
Carmin
,
J.
,
Castán Broto
,
V.
,
Edwards
,
G. A.
, and
Fuller
,
S.
,
2013
, “
Climate Justice and Global Cities: Mapping the Emerging Discourses
,”
Global Environ. Change
,
23
(
5
), pp.
914
925
.
2.
Valera-Medina
,
A.
,
Xiao
,
H.
,
Owen-Jones
,
M.
,
David
,
W. I.
, and
Bowen
,
P. J.
,
2018
, “
Ammonia for Power
,”
Prog. Energy Combust. Sci.
,
69
, pp.
63
102
.
3.
Al-Aboosi
,
F. Y.
,
El-Halwagi
,
M. M.
,
Moore
,
M.
, and
Nielsen
,
R. B.
,
2021
, “
Renewable Ammonia as an Alternative Fuel for the Shipping Industry
,”
Curr. Opin. Chem. Eng.
,
31
, p.
100670
.
4.
Kurien
,
C.
, and
Mittal
,
M.
,
2022
, “
Review on the Production and Utilization of Green Ammonia as an Alternate Fuel in Dual-Fuel Compression Ignition Engines
,”
Energy Convers. Manage.
,
251
, p.
114990
.
5.
Aziz
,
M.
,
Wijayanta
,
A. T.
, and
Nandiyanto
,
A. B. D.
,
2020
, “
Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization
,”
Energies
,
13
(
12
), p.
3062
.
6.
Cardoso
,
J. S.
,
Silva
,
V.
,
Rocha
,
R. C.
,
Hall
,
M. J.
,
Costa
,
M.
, and
Eusébio
,
D.
,
2021
, “
Ammonia as an Energy Vector: Current and Future Prospects for Low-Carbon Fuel Applications in Internal Combustion Engines
,”
J. Cleaner Prod.
,
296
, p.
126562
.
7.
Nadimi
,
E.
,
Przybyła
,
G.
,
Lewandowski
,
M. T.
, and
Adamczyk
,
W.
,
2023
, “
Effects of Ammonia on Combustion, Emissions, and Performance of the Ammonia/Diesel Dual-Fuel Compression Ignition Engine
,”
J. Energy Inst.
,
107
, p.
101158
.
8.
Dolan
,
R. H.
,
Anderson
,
J. E.
, and
Wallington
,
T. J.
,
2021
, “
Outlook for Ammonia as a Sustainable Transportation Fuel
,”
Sustain. Energy Fuels
,
5
(
19
), pp.
4830
4841
.
9.
Huang
,
Q.
, and
Liu
,
J.
,
2024
, “
Preliminary Assessment of the Potential for Rapid Combustion of Pure Ammonia in Engine Cylinders Using the Multiple Spark Ignition Strategy
,”
Int. J. Hydrogen Energy
,
55
, pp.
375
385
.
10.
Yang
,
R.
,
Liu
,
Z.
, and
Liu
,
J.
,
2024
, “
The Methodology of Decoupling Fuel and Thermal Nitrogen Oxides in Multi-Dimensional Computational Fluid Dynamics Combustion Simulation of Ammonia-Hydrogen Spark Ignition Engines
,”
Int. J. Hydrogen Energy
,
55
, pp.
300
318
.
11.
Ou
,
J.
,
Zhang
,
Z.
,
Liu
,
Z.
, and
Liu
,
J.
,
2024
, “
Effect of Ammonia Reaction Kinetics on the Two-Stage Ignition Mechanism of Dimethyl Ether
,”
Fuel Process. Technol.
,
261
, p.
108112
.
12.
Liu
,
J.
, and
Liu
,
Z.
,
2024
, “
IN-Cylinder Thermochemical Fuel Reforming for High Efficiency in Ammonia Spark-Ignited Engines Through Hydrogen Generation From Fuel-Rich Operations
,”
Int. J. Hydrogen Energy
,
54
, pp.
837
848
.
13.
Comotti
,
M.
, and
Frigo
,
S.
,
2015
, “
Hydrogen Generation System for Ammonia–Hydrogen Fuelled Internal Combustion Engines
,”
Int. J. Hydrogen Energy
,
40
(
33
), pp.
10673
10686
.
14.
Dimitriou
,
P.
, and
Javaid
,
R.
,
2020
, “
A Review of Ammonia as a Compression Ignition Engine Fuel
,”
Int. J. Hydrogen Energy
,
45
(
11
), pp.
7098
7118
.
15.
Tashie-Lewis
,
B. C.
, and
Nnabuife
,
S. G.
,
2021
, “
Hydrogen Production, Distribution, Storage and Power Conversion in a Hydrogen Economy—A Technology Review
,”
Chem. Eng. J. Adv.
,
8
, p.
100172
.
16.
Pessina
,
V.
,
Berni
,
F.
,
Fontanesi
,
S.
,
Stagni
,
A.
, and
Mehl
,
M.
,
2022
, “
Laminar Flame Speed Correlations of Ammonia/Hydrogen Mixtures at High Pressure and Temperature for Combustion Modeling Applications
,”
Int. J. Hydrogen Energy
,
47
(
61
), pp.
25780
25794
.
17.
Mørch
,
C. S.
,
Bjerre
,
A.
,
Gøttrup
,
M. P.
,
Sorenson
,
S. C.
, and
Schramm
,
J.
,
2011
, “
Ammonia/Hydrogen Mixtures in an SI-Engine: Engine Performance and Analysis of a Proposed Fuel System
,”
Fuel
,
90
(
2
), pp.
854
864
.
18.
Lhuillier
,
C.
,
Brequigny
,
P.
,
Contino
,
F.
, and
Mounaïm-Rousselle
,
C.
,
2020
, “
Experimental Study on Ammonia/Hydrogen/Air Combustion in Spark Ignition Engine Conditions
,”
Fuel
,
269
, p.
117448
.
19.
Dinesh
,
M. H.
,
Pandey
,
J. K.
, and
Kumar
,
G. N.
,
2022
, “
Study of Performance, Combustion, and NOx Emission Behavior of an SI Engine Fuelled With Ammonia/Hydrogen Blends at Various Compression Ratio
,”
Int. J. Hydrogen Energy
,
47
(
60
), pp.
25391
25403
.
20.
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2015
, “
Experimental and Modeling Study on the High-Temperature Oxidation of Ammonia and Related NOx Chemistry
,”
Combust. Flame
,
162
(
3
), pp.
554
570
.
21.
Zeldvich
,
Y. B.
,
1946
, “
The Oxidation of Nitrogen in Combustion and Explosions
,”
J. Acta Physicochimica
,
21
, p.
577
.
22.
Yang
,
R.
,
Liu
,
J.
,
Liu
,
Z.
, and
Liu
,
J.
,
2024
, “
Applying Separate Treatment of Fuel- and Air-Borne Nitrogen to Enhance Understanding of In-Cylinder Nitrogen-Based Pollutants Formation and Evolution in Ammonia-Diesel Dual Fuel Engines
,”
Sustain. Energy Technol. Assessments
,
69
, p.
103910
.
23.
Westlye
,
F. R.
,
Ivarsson
,
A.
, and
Schramm
,
J.
,
2013
, “
Experimental Investigation of Nitrogen Based Emissions From an Ammonia Fueled SI-Engine
,”
Fuel
,
111
, pp.
239
247
.
24.
Sawyer
,
R. F.
,
Starkman
,
E. S.
,
Muzio
,
L.
, and
Schmidt
,
W. L.
“Oxides of Nitrogen in the Combustion Products of an Ammonia Fueled Reciprocating Engine. No. 680401,” SAE Technical Paper, 1968.
25.
Liu
,
J.
,
Ulishney
,
C. J.
, and
Dumitrescu
,
C. E.
,
2023
, “
Numerical Investigation of a Heavy-Duty Compression Ignition Engine Converted to Ammonia Spark-Ignition Operation
,”
ASME J. Eng. Gas Turbines Power
,
145
(
8
), p.
081008
.
26.
Liu
,
J.
,
Ulishney
,
C.
, and
Dumitrescu
,
C. E.
,
2022
, “
On the Conversion of Diesel Engines to Dedicated Ammonia: Lean, Stoichiometric or Rich Operation
,”
14th International Conference on Applied Energy
,
Bochum, Germany
,
Aug. 8–11
.
27.
Mousavi
,
S. M.
,
Sotoudeh
,
F.
,
Jun
,
D.
,
Lee
,
B. J.
,
Esfahani
,
J. A.
, and
Karimi
,
N.
,
2022
, “
On the Effects of NH3 Addition to a Reacting Mixture of H2/CH4 Under MILD Combustion Regime: Numerical Modeling With a Modified EDC Combustion Model
,”
Fuel
,
326
, p.
125096
.
28.
Gotama
,
G. J.
,
Hayakawa
,
A.
,
Okafor
,
E. C.
,
Kanoshima
,
R.
,
Hayashi
,
M.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2022
, “
Measurement of the Laminar Burning Velocity and Kinetics Study of the Importance of the Hydrogen Recovery Mechanism of Ammonia/Hydrogen/Air Premixed Flames
,”
Combust. Flame
,
236
, p.
111753
.
29.
Otomo
,
J.
,
Koshi
,
M.
,
Mitsumori
,
T.
,
Iwasaki
,
H.
, and
Yamada
,
K.
,
2018
, “
Chemical Kinetic Modeling of Ammonia Oxidation With Improved Reaction Mechanism for Ammonia/Air and Ammonia/Hydrogen/Air Combustion
,”
Int. J. Hydrogen Energy
,
43
(
5
), pp.
3004
3014
.
30.
Hayakawa
,
A.
,
Goto
,
T.
,
Mimoto
,
R.
,
Arakawa
,
Y.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2015
, “
Laminar Burning Velocity and Markstein Length of Ammonia/Air Premixed Flames at Various Pressures
,”
Fuel
,
159
, pp.
98
106
.
31.
Shrestha
,
K. P.
,
Lhuillier
,
C.
,
Barbosa
,
A. A.
,
Brequigny
,
P.
,
Contino
,
F.
,
Mounaïm-Rousselle
,
C.
,
Seidel
,
L.
, and
Mauss
,
F.
,
2021
, “
An Experimental and Modeling Study of Ammonia With Enriched Oxygen Content and Ammonia/Hydrogen Laminar Flame Speed at Elevated Pressure and Temperature
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2163
2174
.
32.
Lee
,
J. H.
,
Lee
,
S. I.
, and
Kwon
,
O. C.
,
2010
, “
Effects of Ammonia Substitution on Hydrogen/Air Flame Propagation and Emissions
,”
Int. J. Hydrogen Energy
,
35
(
20
), pp.
11332
11341
.
33.
Figueroa-Labastida
,
M.
,
Zheng
,
L.
,
Ferris
,
A. M.
, and
Hanson
,
R. K.
,
2023
, “
High-Temperature Ammonia Flame Speed Measurements Behind Reflected Shock Waves
,”
13th US National Combustion Meeting
,
College Station, TX
,
Mar. 19–22
.
34.
Gregory
,
D. M. G.
,
Smith
,
P.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Thomas Bowman
,
C.
, et al
http://www.me.berkeley.edu/gri_mech/.
You do not currently have access to this content.