Abstract

Due to the pressing issue of global warming, there has been a significant focus on zero- and low-carbon fuels globally. Among hydrocarbon fuels, methane is widely used in spark ignition engines due to its abundance and relatively low-carbon footprint. However, to further reduce carbon emissions, interest is growing in the use of ammonia, a zero-carbon fuel, as a partial replacement for methane. Consequently, it is crucial to investigate the impact of ammonia addition on the performance of natural gas spark ignition engines. A key challenge in studying ammonia–methane engines is that the introduction of ammonia alters the formation mechanisms of nitrogen-based pollutants, resulting in the coupling of fuel-borne and airborne nitrogen pollutants. As a result, research on the nitrogen-based emissions of ammonia–methane engines has been limited. This study addresses this issue by differentiating between atmospheric nitrogen and fuel nitrogen elements, effectively decoupling fuel-borne and airborne nitrogen pollutants. This approach provides valuable insights into the effects of ammonia addition on the nitrogen-based pollutant characteristics of natural gas engines. The results indicate that ammonia addition introduces N2O, a species absent in pure methane engines. The N2O primarily originates from cold wall regions and the partial oxidation of ammonia released from engine crevices during the late oxidation process. Although NO remains the dominant nitrogen-based pollutant and the amount of N2O is small, the significant greenhouse gas potential of N2O warrants further attention. Furthermore, while ammonia addition increases the NO concentration in the burning zone, it slightly reduces the NO concentration at chemical equilibrium under stoichiometric conditions. As a result, engines operating with an ammonia energy substitution ratio of 0.4 exhibit lower nitrogen oxide (NOx) emissions compared to those fueled solely by methane. These findings underscore the need for further research into the combustion and emission characteristics of ammonia–methane spark ignition engines.

References

1.
Seto
,
K. C.
,
Churkina
,
G.
,
Hsu
,
A.
,
Keller
,
M.
,
Newman
,
P. W.
,
Qin
,
B.
, and
Ramaswami
,
A.
,
2021
, “
From Low-to Net-Zero Carbon Cities: The Next Global Agenda
,”
Annu. Rev. Environ. Resour.
,
46
(
1
), pp.
377
415
.
2.
Biernat
,
K.
,
Samson-Bręk
,
I.
,
Chłopek
,
Z.
,
Owczuk
,
M.
, and
Matuszewska
,
A.
,
2021
, “
Assessment of the Environmental Impact of Using Methane Fuels to Supply Internal Combustion Engines
,”
Energies
,
14
(
11
), p.
3356
.
3.
Lubrano Lavadera
,
M.
,
Han
,
X.
, and
Konnov
,
A. A.
,
2020
, “
Comparative Effect of Ammonia Addition on the Laminar Burning Velocities of Methane, n-Heptane, and Iso-Octane
,”
Energy Fuels
,
35
(
9
), pp.
7156
7168
.
4.
Polk
,
A. C.
,
Gibson
,
C. M.
,
Shoemaker
,
N. T.
,
Srinivasan
,
K. K.
, and
Krishnan
,
S. R.
,
2013
, “
Analysis of Ignition Behavior in a Turbocharged Direct Injection Dual Fuel Engine Using Propane and Methane as Primary Fuels
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032202
.
5.
Guerry
,
E. S.
,
Raihan
,
M. S.
,
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
, and
Sohail
,
A.
,
2016
, “
Injection Timing Effects on Partially Premixed Diesel–Methane Dual Fuel Low Temperature Combustion
,”
Appl. Energy
,
162
, pp.
99
113
.
6.
Wang
,
Y.
,
Cai
,
H.
,
Hu
,
X.
,
Liu
,
P.
,
Yan
,
Q.
, and
Cheng
,
Y.
,
2024
, “
Data-Driven Method for Estimating Emission Factors of Multiple Pollutants From Excavators Based on Portable Emission Measurement System and Online Driving Characteristic Identification
,”
Sci. Total Environ.
,
912
, p.
169472
.
7.
Huang
,
Q.
,
Yang
,
R.
,
Liu
,
J.
,
Xie
,
T.
, and
Liu
,
J.
,
2024
, “
Investigation of the Mechanism Behind the Surge in Nitrogen Dioxide Emissions in Engines Transitioning From Pure Diesel Operation to Methanol/Diesel Dual-Fuel Operation
,”
Fuel Process. Technol.
,
264
, p.
108131
.
8.
Bunce
,
M.
,
Seba
,
B.
,
Andreutti
,
R.
,
Yan
,
Z.
, and
Peters
,
N.
,
2024
, “
Development of a High Power, Low Emissions Heavy Duty Hydrogen Engine
,” SAE Technical Paper No. 2024-01-2610.
9.
Christodoulou
,
A.
, and
Echebarria Fernández
,
J.
,
2021
, “Maritime Governance and International Maritime Organization Instruments Focused on Sustainability in the Light of United Nations’ Sustainable Development Goals,”
Sustainability in the Maritime Domain: Towards Ocean Governance and Beyond
, pp.
415
461
.
10.
Argüello
,
G.
,
2021
, “
The International Maritime Organization and Regime Interaction: Cooperation or Hegemony?
,”
Cambridge Int. Law J.
,
10
(
2
), pp.
255
279
.
11.
Mashruk
,
S.
,
Kovaleva
,
M.
,
Tung Chong
,
C.
,
Hayakawa
,
A.
,
Okafor
,
E. C.
, and
Valera-Medina
,
A.
,
2021
, “
Nitrogen Oxides as a By-Product of Ammonia/Hydrogen Combustion Regimes
,”
Chem. Eng. Trans.
,
89
, pp.
613
618
.
12.
Xiong
,
Y.
,
Tian
,
J.
,
Wang
,
Y.
,
Wang
,
L.
,
Shi
,
X.
,
Kong
,
D.
,
Cheng
,
Y.
, and
Zhao
,
Q.
,
2024
, “
Experimental Study on Multi-Point Ignition of NH3/Air by High-Frequency Nanosecond Dielectric Barrier Discharge
,”
Fuel
,
378
, p.
132972
.
13.
Tian
,
J.
,
Wang
,
L.
,
Xiong
,
Y.
,
Wang
,
Y.
,
Yin
,
W.
,
Tian
,
G.
,
Wang
,
Z.
,
Cheng
,
Y.
, and
Ji
,
S.
,
2024
, “
Enhancing Combustion Efficiency and Reducing Nitrogen Oxide Emissions From Ammonia Combustion: A Comprehensive Review
,”
Process Saf. Environ. Prot.
,
183
, pp.
514
543
.
14.
Chiong
,
M. C.
,
Chong
,
C. T.
,
Ng
,
J. H.
,
Mashruk
,
S.
,
Chong
,
W. W.
,
Samiran
,
N. A.
,
Mong
,
G. R.
, and
Valera-Medina
,
A.
,
2021
, “
Advancements of Combustion Technologies in the Ammonia-Fuelled Engines
,”
Energy Convers. Manage.
,
244
, p.
114460
.
15.
Huang
,
Q.
, and
Liu
,
J.
,
2024
, “
Preliminary Assessment of the Potential for Rapid Combustion of Pure Ammonia in Engine Cylinders Using the Multiple Spark Ignition Strategy
,”
Int. J. Hydrogen Energy
,
55
, pp.
375
385
.
16.
Yan
,
Y.
,
Shang
,
T.
,
Li
,
L.
,
Liu
,
Z.
, and
Liu
,
J.
,
2024
, “
Assessing Hydrogen–Ammonia Ratios to Achieve Rapid Kernel Inception in Spark-Ignition Engines
,”
ASME J. Energy Resour. Technol.
,
146
(
6
), p.
062301
.
17.
Yan
,
Y.
,
Liu
,
Z.
, and
Liu
,
J.
,
2023
, “
An Evaluation of the Conversion of Gasoline and Natural Gas Spark Ignition Engines to Ammonia/Hydrogen Operation From the Perspective of Laminar Flame Speed
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
012302
.
18.
Wei
,
W.
,
Li
,
G.
,
Zhang
,
Z.
,
Long
,
Y.
,
Zhang
,
H.
,
Huang
,
Y.
,
Zhou
,
M.
, and
Wei
,
Y.
,
2023
, “
Effects of Ammonia Addition on the Performance and Emissions for a Spark-Ignition Marine Natural Gas Engine
,”
Energy
,
272
, p.
127092
.
19.
Kurien
,
C.
,
Varma
,
P. S.
, and
Mittal
,
M.
,
2023
, “
Effect of Ammonia Energy Fractions on Combustion Stability and Engine Characteristics of Gaseous (Ammonia/Methane) Fuelled Spark Ignition Engine
,”
Int. J. Hydrogen Energy
,
48
(
4
), pp.
1391
1400
.
20.
Oh
,
S.
,
Park
,
C.
,
Kim
,
S.
,
Kim
,
Y.
,
Choi
,
Y.
, and
Kim
,
C.
,
2021
, “
Natural Gas–Ammonia Dual-Fuel Combustion in Spark-Ignited Engine With Various air–Fuel Ratios and Split Ratios of Ammonia Under Part Load Condition
,”
Fuel
,
290
, p.
120095
.
21.
Oh
,
S.
,
Park
,
C.
,
Ahn
,
M.
,
Jang
,
H.
, and
Kim
,
S.
,
2023
, “
Experimental Approach for Reducing Nitrogen Oxides Emissions From Ammonia–Natural Gas Dual-Fuel Spark-Ignition Engine
,”
Fuel
,
332
, p.
126065
.
22.
Oh
,
S.
,
Park
,
C.
,
Oh
,
J.
,
Kim
,
S.
,
Kim
,
Y.
,
Choi
,
Y.
, and
Kim
,
C.
,
2022
, “
Combustion, Emissions, and Performance of Natural Gas–Ammonia Dual-Fuel Spark-Ignited Engine at Full-Load Condition
,”
Energy
,
258
, p.
124837
.
23.
Alvarez
,
L. F.
, and
Dumitrescu
,
C. E.
,
2024
, “
Experimental Study of Ammonia Combustion in a Heavy-Duty Diesel Engine Converted to Spark Ignition Operation
,” SAE Technical Paper No. 2024-01-2371.
24.
Yan
,
Y.
,
Liu
,
Z.
, and
Liu
,
J.
,
2024
, “
Computational Analysis of Ammonia-Hydrogen Blends in Homogeneous Charge Compression Ignition Engine Operation
,”
Process Saf. Environ. Prot.
,
190
, pp.
1263
1272
.
25.
Liu
,
J.
, and
Liu
,
Z.
,
2024
, “
In-Cylinder Thermochemical Fuel Reforming for High Efficiency in Ammonia Spark-Ignited Engines Through Hydrogen Generation From Fuel-Rich Operations
,”
Int. J. Hydrogen Energy
,
54
, pp.
837
848
.
26.
Heywood
,
J. B.
,
2018
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Education
,
New York
.
27.
Yang
,
R.
,
Liu
,
Z.
, and
Liu
,
J.
,
2024
, “
The Methodology of Decoupling Fuel and Thermal Nitrogen Oxides in Multi-Dimensional Computational Fluid Dynamics Combustion Simulation of Ammonia-Hydrogen Spark Ignition Engines
,”
Int. J. Hydrogen Energy
,
55
, pp.
300
318
.
28.
Zeldvich
,
Y. B.
,
1946
, “
The Oxidation of Nitrogen in Combustion and Explosions
,”
Acta Physicochim.
,
21
, pp.
577
628
.
29.
Yang
,
R.
,
Liu
,
J.
,
Liu
,
Z.
, and
Liu
,
J.
,
2024
, “
Applying Separate Treatment of Fuel-and Air-Borne Nitrogen to Enhance Understanding of In-Cylinder Nitrogen-Based Pollutants Formation and Evolution in Ammonia-Diesel Dual Fuel Engines
,”
Sustain. Energy Technol. Assess.
,
69
, p.
103910
.
30.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.
31.
Tan
,
Z.
, and
Reitz
,
R. D.
,
2006
, “
An Ignition and Combustion Model Based on the Level-Set Method for Spark Ignition Engine Multidimensional Modeling
,”
Combust. Flame
,
145
(
1–2
), pp.
1
5
.
32.
Fan
,
L.
,
Li
,
G.
,
Han
,
Z.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Fuel Preparation and Stratified Combustion in a Gasoline Direct Injection Engine
,” SAE Technical Paper, Report No. 1999-01-0175.
33.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
, et al
, “
GRI Mech 3.0. Gas Research Institute
,” http://www.me.berkeley.edu/gri_mech/
34.
Okafor
,
E. C.
,
Naito
,
Y.
,
Colson
,
S.
,
Ichikawa
,
A.
,
Kudo
,
T.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2018
, “
Experimental and Numerical Study of the Laminar Burning Velocity of CH4–NH3–Air Premixed Flames
,”
Combust. Flame
,
187
, pp.
185
198
.
35.
Tian
,
Z.
,
Zhang
,
L.
,
Li
,
Y.
,
Yuan
,
T.
, and
Qi
,
F.
,
2009
, “
An Experimental and Kinetic Modeling Study of a Premixed Nitromethane Flame at Low Pressure
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
311
318
.
36.
Wang
,
S.
,
Wang
,
Z.
,
Chen
,
C.
,
Elbaz
,
A. M.
,
Sun
,
Z.
, and
Roberts
,
W. L.
,
2022
, “
Applying Heat Flux Method to Laminar Burning Velocity Measurements of NH3/CH4/Air at Elevated Pressures and Kinetic Modeling Study
,”
Proc. Combust. Inst.
,
236
, p.
111788
.
37.
Rozenchan
,
G.
,
Zhu
,
D. L.
,
Law
,
C. K.
, and
Tse
,
S. D.
,
2002
, “
Outward Propagation, Burning Velocities, and Chemical Effects of Methane Flames up to 60 atm
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1461
1470
.
38.
Gu
,
X. J.
,
Haq
,
M. Z.
,
Lawes
,
M.
, and
Woolley
,
R.
,
2000
, “
Laminar Burning Velocity and Markstein Lengths of Methane–Air Mixtures
,”
Combust. Flame
,
121
(
1–2
), pp.
41
58
.
39.
Okafor
,
E. C.
,
Naito
,
Y.
,
Colson
,
S.
,
Ichikawa
,
A.
,
Kudo
,
T.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2019
, “
Measurement and Modelling of the Laminar Burning Velocity of Methane-Ammonia-Air Flames at High Pressures Using a Reduced Reaction Mechanism
,”
Combust. Flame
,
204
, pp.
162
175
.
40.
Bao
,
Y.
,
Du
,
H.
,
Chai
,
W. S.
,
Nie
,
D.
, and
Zhou
,
L.
,
2022
, “
Numerical Investigation and Optimization on Laminar Burning Velocity of Ammonia-Based Fuels Based on GRI3.0 Mechanism
,”
Fuel
,
318
, p.
123681
.
You do not currently have access to this content.