Abstract

Apex seal leakage is one of the main defects restricting the performance improvement of rotary engines. The aim of this study is to study the airflow movement in a peripheral ported rotary engine under the action of apex seal leakage. For this purpose, a three-dimensional (3D) dynamic calculation model considering apex seal leakage was first established and verified by particle image velocimetry data. Furthermore, based on the established 3D model, the flow field in the combustion chamber under the four apex seal leakage gaps (0.02, 0.04, 0.06, and 0.08 mms) and the three engine revolution speeds (2000, 3500, and 5000 RPMs) was calculated. By comparing with the flow field under the condition without leakage, the influences of the existence of apex seal leakage on the velocity field, the turbulent kinetic energy, and the volumetric efficiency in the combustion chamber were investigated. Thereinto, the influences of the existence of apex seal leakage on the velocity field is that at the intake stroke, a vortex formed in the middle of the combustion chamber under the condition without apex seal leakage, was intensified by the apex seal leakage action. At the compression stroke, irrespective of the condition with or without apex seal leakage, all vortexes in the combustion chamber are gradually broken into a unidirectional flow. However, there is an obvious “leakage flow area” at the end of combustion chamber due to the existence of apex seal leakage.

References

1.
Fan
,
B.
,
Pan
,
J.
,
Yang
,
W.
,
Pan
,
Z.
,
Bani
,
S.
,
Chen
,
W.
, and
He
,
R.
,
2017
, “
Combined Effect of Injection Timing and Injection Angle on Mixture Formation and Combustion Process in a Direct Injection (DI) Natural Gas Rotary Engine
,”
Energy
,
128
, pp.
519
530
.10.1016/j.energy.2017.04.052
2.
Ozcanli
,
M.
,
Bas
,
O.
,
Akar
,
M. A.
,
Yildizhan
,
S.
, and
Serin
,
H.
,
2018
, “
Recent Studies on Hydrogen Usage in Wankel SI Engine
,”
Int. J. Hydrogen Energy
,
43
(
38
), pp.
18037
18045
.10.1016/j.ijhydene.2018.01.202
3.
Su
,
T.
,
Ji
,
C.
,
Wang
,
S.
,
Shi
,
L.
, and
Cong
,
X.
,
2018
, “
Effect of Ignition Timing on Performance of a Hydrogen-Enriched n-Butanol Rotary Engine at Lean Condition
,”
Energy Convers. Manage.
,
161
, pp.
27
34
.10.1016/j.enconman.2018.01.072
4.
Otchere
,
P.
,
Pan
,
J.
,
Fan
,
B.
,
Chen
,
W.
,
Yao
,
L.
, and
Jianxing
,
L.
,
2019
, “
Numerical Investigation of the Effect of Advance Ignition Timing on Combustion Process in Direct Injection Rotary Engine Fueled With Biodiesel
,”
Environ. Prog. Sustain. Energy
,
39
(
3
), p.
e13368
.10.1002/ep.13368
5.
Gao
,
J.
,
Tian
,
G.
,
Jenner
,
P.
,
Burgess
,
M.
, and
Emhardt
,
S.
,
2020
, “
Preliminary Explorations of the Performance of a Novel Small Scale Opposed Rotary Piston Engine
,”
Energy
,
190
, p.
116402
.10.1016/j.energy.2019.116402
6.
Vorraro
,
G.
,
Turner
,
M.
, and
Turner
,
J. W. G.
,
2019
, “
Testing of a Modern Wankel Rotary Engine—Part I: Experimental Plan, Development of the Software Tools and Measurement Systems
,”
SAE Paper No. 2019-01-0075
.10.4271/2019-01-0075
7.
Hubmann
,
C.
,
Beste
,
F.
,
Friedl
,
H.
, and
Schoffmann
,
M.
,
2013
, “
Single Cylinder 25 kW Range Extender as Alternative to a Rotary Engine Maintaining High Compactness and NVH Performance
,”
SAE Paper No. 2013-32-9132
.10.4271/2013-32-9132
8.
Zambalov
,
S. D.
,
Yakovlev
,
I. A.
, and
Skripnyak
,
V. A.
,
2017
, “
Numerical Simulation of Hydrogen Combustion Process in Rotary Engine With Laser Ignition System
,”
Int. J. Hydrogen Energy
,
42
(
27
), pp.
17251
17259
.10.1016/j.ijhydene.2017.05.142
9.
Wang
,
W.
,
Zuo
,
Z.
, and
Liu
,
J.
,
2016
, “
Miniaturization Limitations of Rotary Internal Combustion Engines
,”
Energy Convers. Manage.
,
112
, pp.
101
114
.10.1016/j.enconman.2016.01.002
10.
He
,
X.
,
Huang
,
W.
,
Zhu
,
B.
, and
Luo
,
L.
,
2011
, “
Air Suction Characteristics of a Water Hydraulic Piston Pump With Check Valves
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
114502
.10.1115/1.4005259
11.
Amrouche
,
F.
,
Erickson
,
P.
,
Park
,
J.
, and
Varnhagen
,
S.
,
2014
, “
An Experimental Investigation of Hydrogen-Enriched Gasoline in a Wankel Rotary Engine
,”
Int. J. Hydrogen Energy
,
39
(
16
), pp.
8525
8534
.10.1016/j.ijhydene.2014.03.172
12.
Kawahara
,
N.
,
Tomita
,
E.
,
Hayashi
,
K.
,
Tabata
,
M.
,
Iwai
,
K.
, and
Kagawa
,
R.
,
2007
, “
Cycle-Resolved Measurements of the Fuel Concentration Near a Spark Plug in a Rotary Engine Using an In Situ Laser Absorption Method
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3033
3040
.10.1016/j.proci.2006.08.088
13.
Zhang
,
Y.
, and
Wang
,
W.
,
2011
, “
Effects of Leakage and Friction on the Miniaturization of a Wankel Compressor
,”
Front. Energy
,
5
(
1
), pp.
83
92
.10.1007/s11708-010-0125-7
14.
Rose
,
S. W.
, and
Yang
,
D. C. H.
,
2014
, “
Wide and Multiple Apex Seals for the Rotary Engine (Abbr.: Multi-Apex-Seals for the Rotary Engine
,”
Mech. Mach. Theory
,
74
, pp.
202
215
.10.1016/j.mechmachtheory.2013.12.011
15.
Zhang
,
S.
,
Liu
,
J.
,
Zuo
,
Z.
, and
Zhang
,
Y.
,
2017
, “
An Analytical Investigation of Oil Film Thickness for the Apex Seal in a Small Wankel Rotary Engine
,”
Tribol. Int.
,
116
, pp.
383
393
.10.1016/j.triboint.2017.07.031
16.
Picard
,
M.
,
Tian
,
T.
, and
Nishino
,
T.
,
2015
, “
Modeling of the Rotary Engine Apex Seal Lubrication
,”
SAE Paper No. 2015-01-2035
.10.4271/2015-01-2035
17.
Jeng
,
D. Z.
,
Hsieh
,
M. J.
,
Lee
,
C. C.
, and
Han
,
Y.
,
2013
, “
The Numerical Investigation on the Performance of Rotary Engine With Leakage, Different Fuels and Recess Sizes
,”
SAE Paper No. 2013-32-9160
.10.4271/2013-32-9160
18.
Harikrishnan
,
T. V.
,
Challa
,
S.
, and
Radhakrishna
,
D.
,
2016
, “
Numerical Investigation on the Effects of Flame Propagation in Rotary Engine Performance With Leakage and Different Recess Shapes Using Three-Dimensional Computational Fluid Dynamics
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052210
.10.1115/1.4033572
19.
Huijnen
,
V.
,
Somers
,
L. M. T.
,
Baert
,
R. S. G.
,
De Goey
,
L. P. H.
,
Olbricht
,
C.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2006
, “
Study of Turbulent Flow Structures of a Practical Steady Engine Head Flow Using Large-Eddy Simlations
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1181
1191
.10.1115/1.2353259
20.
Pan
,
J.
,
Hu
,
Z.
,
Wei
,
H.
,
Pan
,
M.
,
Liang
,
X.
,
Shu
,
G.
, and
Zhou
,
L.
,
2019
, “
Understanding Strong Knocking Mechanism Through High-Strength Optical Rapid Compression Machines
,”
Combust. Flame
,
202
, pp.
1
15
.10.1016/j.combustflame.2019.01.004
21.
Yadollahi
,
B.
, and
Boroomand
,
M.
,
2013
, “
A Numerical Investigation of Combustion and Mixture Formation in a Compressed Natural Gas DISI Engine With Centrally Mounted Single-Hole Injector
,”
ASME J. Fluids Eng.
,
135
(
9
), p.
091101
.10.1115/1.4024560
22.
Defilippis
,
M.
,
Hamady
,
F.
,
Novak
,
M.
, and
Schock
,
H.
,
1992
, “
Effects of Pocket Configuration on the Flow Field in a Rotary Engine Assembly
,”
SAE Paper No. 920300
.10.4271/920300
23.
Hasegawa
,
Y.
, and
Yamaguchi
,
K.
,
1993
, “
An Experimental Investigation on Air-Fuel Mixture Formation Inside a Low-Pressure Direct Injection Stratified Charge Rotary Engine
,”
SAE Paper No. 930678
.10.4271/930678
24.
Hamady
,
F.
,
Stuecken
,
T.
, and
Schock
,
H.
,
1990
, “
Airflow Visualization and LDV Measurements in a Motored Rotary Engine Assembly Part 1: Flow Visualization
,”
SAE Paper No. 900030
.10.4271/900030
25.
Maki
,
T.
,
Moriyoshi
,
Y.
,
Okui
,
N.
, and
Tabata
,
M.
,
2008
, “
PIV Measurement of Flow Field in a Rotary Engine
,”
Trans. Visual. Soc. Jpn.
,
28-1
(
1
), pp.
205
206
.10.3154/jvs.28.205
26.
Fan
,
B.
,
Pan
,
J.
,
Yang
,
W.
,
An
,
H.
,
Tang
,
A.
,
Shao
,
X.
, and
Xue
,
H.
,
2015
, “
Effects of Different Parameters on the Flow Field of Peripheral Ported Rotary Engines
,”
Eng. Appl. Comp. Fluid Mech.
,
9
(
1
), pp.
445
457
.10.1080/19942060.2015.1063237
27.
Baratta
,
M.
,
Catania
,
A. E.
, and
Pesce
,
F. C.
,
2011
, “
Multidimensional Modeling of Natural Gas Jet and Mixture Formation in Direct Injection Spark Ignition Engines-Development and Validation of a Virtual Injector Model
,”
ASME J. Fluids Eng.
,
133
(
4
), p.
041304
.10.1115/1.4003877
28.
Andersson
,
N.
,
Eriksson
,
L. E.
, and
Nilsson
,
M.
,
2015
, “
Numerical Simulation of Stirling Engines Using an Unsteady Quasi-One-Dimensional Approach
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051104
.10.1115/1.4029396
29.
Yang
,
B.
,
Li
,
B.
,
Chen
,
H.
,
Liu
,
Z.
, and
Xu
,
K.
,
2018
, “
Numerical Investigation of the Clocking Effect Between Inducer and Impeller on Pressure Pulsations in a Liquid Rocket Engine Oxygen Turbopump
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
071109
.10.1115/1.4042160
30.
Turner
,
M.
,
Peden
,
M.
,
Turner
,
J. W. G.
, and
Bailey
,
N.
,
2018
, “
Comparison of 1-D Modelling Approaches for Wankel Engine Performance Simulation and Initial Study of the Direct Injection Limitations
,”
SAE Paper No. 2018-01-1452
.10.4271/2018-01-1452
31.
Hwang
,
P. W.
,
Chen
,
X. C.
, and
Cheng
,
H. C.
,
2016
, “
Influences of Ignition Timing, Spark Plug and Intake Port Locations on the Combustion Performance of a Simulated Rotary Engine
,”
J. Mech.
,
32
(
5
), pp.
579
591
.10.1017/jmech.2016.39
32.
Yang
,
J.
,
Ji
,
C.
,
Wang
,
S.
,
Wang
,
D.
,
Shi
,
C.
,
Ma
,
Z.
, and
Zhang
,
B.
,
2018
, “
Numerical Study of Hydrogen Direct Injection Strategy on Mixture Formation and Combustion Process in a Partially Premixed Gasoline Wankel Rotary Engine
,”
Energy Convers. Manage.
,
176
, pp.
184
193
.10.1016/j.enconman.2018.09.008
33.
Taskiran
,
O. O.
,
Calik
,
A. T.
, and
Kutlar
,
O. A.
,
2019
, “
Comparison of Flow Field and Combustion in Single and Double Side Ported Rotary Engine
,”
Fuel
,
254
, p.
115651
.10.1016/j.fuel.2019.115651
34.
Spreitzer
,
J.
,
Zahradnik
,
F.
, and
Geringer
,
B.
,
2015
, “
Implementation of a Rotary Engine (Wankel Engine) in a CFD Simulation Tool With Special Emphasis on Combustion and Flow Phenomena
,”
SAE Paper No. 2015-01-0382
.10.4271/2015-01-0382
35.
Kalitzin
,
G.
,
Medic
,
G.
,
Iaccarino
,
G.
, and
Durbin
,
P.
,
2005
, “
Near-Wall Behavior of RANS Turbulence Models and Implications for Wall Functions
,”
J. Comput. Phys.
,
204
(
1
), pp.
265
291
.10.1016/j.jcp.2004.10.018
36.
Fan
,
B. W.
,
Pan
,
J. F.
,
Pan
,
Z. H.
,
Tang
,
A. K.
,
Zhu
,
Y. J.
, and
Xue
,
H.
,
2015
, “
Effects of Pocket Shape and Ignition Slot Locations on the Combustion Processes of a Rotary Engine Fueled With Natural Gas
,”
Appl. Therm. Eng.
,
89
, pp.
11
27
.10.1016/j.applthermaleng.2015.05.078
37.
Fan
,
B.
,
Zhang
,
Y.
,
Pan
,
J.
,
Wang
,
Y.
, and
Otchere
,
P.
,
2020
, “
Experimental and Numerical Study on the Formation Mechanism of Flow Field in a Side-Ported Rotary Engine Considering Apex Seal Leakage
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022303
.10.1115/1.4047787
You do not currently have access to this content.