Models for ignition delay are investigated and fuel-specific properties are included to predict the effects of different fuels on the ignition delay. These models follow the Arrhenius type expression for the ignition delay modified with the oxygen concentration and Cetane number to extend the range of validity. In this investigation, two fuel-sensitive spray ignition delay models are developed: a global model and a local model. The global model is based on the global combustion chamber charge properties including temperature, pressure, and oxygen/fuel content. The local model is developed to account for temporal and spatial variations in properties of separated spray zones such as local temperature, oxidizer, and fuel concentrations obtained by a quasi-dimensional multizone fuel spray model. These variations are integrated in time to predict the ignition delay. Often ignition delay models are recalibrated for a specific fuel but in this study, the global ignition delay model includes the Cetane number to capture ignition delay of various fuels. The local model uses Cetane number and local stoichiometric oxygen to fuel molar ratio. The model is therefore capable of predicting spray ignition delays for a set of fuels with a single calibration. Experimental dataset of spray ignition delay in a constant volume chamber is used for model development and calibration. The models show a good accuracy for the predicted ignition delay of four different fuels: JP8, DF2, n-heptane, and n-dodecane. The investigation revealed that the most accurate form of the models is from a calibration done for each individual fuel with only a slight decrease in accuracy when a single calibration is done for all fuels. The single calibration case is the more desirable outcome as it leads to general models that cover all the fuels. Of the two proposed models, the local model has a slightly better accuracy compared to the global model. Results for both models demonstrate the improvements that can be obtained for the ignition delay model when additional fuel-specific properties are included in the spray ignition model. Other alternative fuels like synthetic oxygenated fuels were included in the investigation. These fuels behave differently such that the Cetane number does not provide the same explanation for the trend in ignition delay. Though of lower accuracy, the new models do improve the predictive capability when compared with existing types of ignition delay models applied to this kind of fuels.

References

1.
Novella
,
R.
,
García
,
A.
,
Pastor
,
J. M.
, and
Domenech
,
V.
,
2011
, “
The Role of Detailed Chemical Kinetics on CFD Diesel Spray Ignition and Combustion Modelling
,”
Math. Comput. Modell.
,
54
(
7–8
), pp.
1706
1719
.10.1016/j.mcm.2010.12.048
2.
Brakora
,
J.
, and
Reitz
,
R.
,
2013
, “
A Comprehensive Combustion Model for Biodiesel-Fueled Engine Simulations
,”
SAE
Technical Paper No. 2013-01-1099.10.4271/2013-01-1099
3.
Ismail
,
H. M.
,
Ng
,
H. K.
,
Gan
,
S.
,
Lucchini
,
T.
, and
Onorati
,
A.
,
2013
, “
Development of a Reduced Biodiesel Combustion Kinetics Mechanism for CFD Modelling of a Light-Duty Diesel Engine
,”
Fuel
,
106
, pp.
388
400
.10.1016/j.fuel.2012.10.015
4.
Halstead
,
M. P.
,
Kirsch
,
L. J.
,
Prothero
,
A.
, and
Quinn
,
C. P.
,
1975
, “
A Mathematical Model for Hydrocarbon Autoignition at High Pressures
,”
Proc. R. Soc. London, Ser. A
,
346
(
1647
), pp.
515
538
.10.1098/rspa.1975.0189
5.
Sazhina
,
E. M.
,
Sazhin
,
S. S.
,
Heikal
,
M. R.
, and
Marooney
,
C. J.
,
1999
, “
The Shell Autoignition Model: Applications to Gasoline and Diesel Fuels
,”
Fuel
,
78
(
4
), pp.
389
401
.10.1016/S0016-2361(98)00167-7
6.
Hamosfakidis
,
V.
, and
Reitz
,
R. D.
,
2003
, “
Optimization of a Hydrocarbon Fuel Ignition Model for Two Single Component Surrogates of Diesel Fuel
,”
Combust. Flame
,
132
(
3
), pp.
433
450
.10.1016/S0010-2180(02)00489-3
7.
Watson
,
N.
,
Pilley
,
A. D.
, and
Marzouk
,
M. A.
,
1980
, “
Combustion Correlation for Diesel Engine Simulation
,”
SAE
Technical Paper No. 800029.10.4271/800029
8.
Hiroyasu
,
H.
, and
Arai
,
M.
,
1980
, “
Fuel Spray Penetration and Spray Angle of Diesel Engines
,”
Trans. JSAE
,
21
, pp.
5
11
.
9.
Hiroyasu
,
H.
,
Toshikazu
,
K.
, and
Arai
,
M.
,
1983
, “
Development and Use of a Spray Combustion Modeling to Predict Diesel Engine Efficiency and Pollutant Emissions
,”
Bull. JSME
,
26
(
214
), pp.
569
575
.10.1299/jsme1958.26.569
10.
Assanis
,
D. N.
,
Filipi
,
Z. S.
,
Fiveland
,
S. B.
, and
Syrimis
,
M.
,
2003
, “
A Predictive Ignition Delay Correlation Under Steady-State and Transient Operation of a Direct Injection Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
125
(
2
), pp.
450
457
.10.1115/1.1563238
11.
Zheng
,
M.
,
Mulenga
,
M. C.
,
Reader
,
G. T.
,
Wang
,
M.
,
Ting
,
D. S.-K.
, and
Tjong
,
J.
,
2008
, “
Biodiesel Engine Performance and Emissions in Low Temperature Combustion
,”
Fuel
,
87
(
6
), pp.
714
722
.10.1016/j.fuel.2007.05.039
12.
Maroteaux
,
F.
, and
Saad
,
C.
,
2013
, “
Diesel Engine Combustion Modeling for Hardware in the Loop Applications: Effects of Ignition Delay Time Model
,”
Energy
,
57
, pp.
641
652
.10.1016/j.energy.2013.03.098
13.
Jung
,
D.
,
2001
, “
A Multi-Zone Direct-Injection Diesel Spray Combustion Model for Cycle Simulation Studies of Large-Bore Engine Performance and Emissions
,” Ph.D. dissertation,
Department of Mechanical Engineering, University of Michigan
,
Ann Arbor, MI
.
14.
Zhou
,
P.
,
Zhou
,
S.
, and
Clelland
,
D.
,
2006
, “
A Modified Quasi-Dimensional Multi-Zone Combustion Model for Direct Injection Diesels
,”
Int. J. Engine Res.
,
7
(
4
), pp.
335
345
.10.1243/14680874JER02604
15.
Rakopoulos
,
C. D.
,
Antonopoulos
,
K. A.
,
Rakopoulos
,
D. C.
, and
Hountalas
,
D. T.
,
2008
, “
Multi-Zone Modeling of Combustion and Emissions Formation in DI Diesel Engine Operating on Ethanol–Diesel Fuel Blends
,”
Energy Convers. Manage.
,
49
(
4
), pp.
625
643
.10.1016/j.enconman.2007.07.035
16.
Hountalas
,
D. T.
,
Lamaris
,
V. T.
,
Pariotis
,
E. G.
, and
Ofner
,
H.
,
2008
, “
Parametric Study Based on a Phenomenological Model to Investigate the Effect of Post Fuel Injection on HDDI Diesel Engine Performance and Emissions: Model Validation Using Experimental Data
,”
SAE
Technical Paper No. 2008-01-0641.10.4271/2008-01-0641
17.
Wolfer
,
H. H.
,
1938
, “
Ignition Lag in Diesel Engines
,”
VDI-Forschungsh.
,
392
, p.
621
436.047
; translated by Royal Aircraft Establishment, Aug. 1959, Farnborough Library No. 358, UDC 621-436.047.
18.
Kavtaradze
,
R. Z.
,
Zeilinger
,
K.
, and
Zitzler
,
G.
,
2005
, “
Ignition Delay in a Diesel Engine Utilizing Different Fuels
,”
High Temp.
,
43
(
6
), pp.
951
960
.10.1007/s10740-005-0143-z
19.
Aligrot
,
C.
,
Champoussin
,
J. C.
,
Guerrassi
,
N.
, and
Claus
,
G.
,
1994
, “
Prediction of Self-Ignition Delay of Different Liquid Diesel Fuels
,”
Third International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines
(
COMODIA 94
),
Japan
, July 11–14, pp.
331
336
.http://www.jsme.or.jp/esd/COMODIA-Procs/Data/003/C94_P331.pdf
20.
Hardenberg
,
H. O.
, and
Hase
,
F. W.
,
1979
, “
An Empirical Formula for Computing the Pressure Rise Delay of a Fuel From Its Cetane Number and From the Relevant Parameters of Direct-Injection Diesel Engines
,”
SAE
Technical Paper No. 790493.10.4271/790493
21.
He
,
X.
,
Donovan
,
M. T.
,
Zigler
,
B. T.
,
Palmer
,
T. R.
,
Walton
,
S. M.
,
Wooldridge
,
M. S.
, and
Atreya
,
A.
,
2005
, “
An Experimental and Modeling Study of Iso-Octane Ignition Delay Times Under Homogeneous Charge Compression Ignition Conditions
,”
Combust. Flame
,
142
(
3
), pp.
266
275
.10.1016/j.combustflame.2005.02.014
22.
Walton
,
S. M.
,
He
,
X.
,
Zigler
,
B. T.
,
Wooldridge
,
M. S.
, and
Atreya
,
A.
,
2007
, “
An Experimental Investigation of Iso-Octane Ignition Phenomena
,”
Combust. Flame
,
150
(
3
), pp.
246
262
.10.1016/j.combustflame.2006.07.016
23.
Tsuboi
,
T.
, and
Wagner
,
H. G.
,
1975
, “
Homogeneous Thermal Oxidation of Methane in Reflected Shock Waves
,”
Symp. (Int.) Combust.
,
15
(
1
), pp.
883
890
.10.1016/S0082-0784(75)80355-9
24.
Colket
,
M. B.
, III
, and
Spadaccini
,
L. J.
,
2001
, “
Scramjet Fuels Autoignition Study
,”
J. Propul. Power
,
17
(
2
), pp.
315
323
.10.2514/2.5744
25.
SNL Engine Combustion Department
,
2012
, “
Diesel Spray Combustion
,” Engine Combustion Network, Sandia National Laboratories, Livermore, CA, http://www.sandia.gov/ecn/dieselSprayCombustion.php
26.
Ciezki
,
H. K.
, and
Adomeit
,
G.
,
1993
, “
Shock-Tube Investigation of Self-Ignition of n-Heptane–Air Mixtures Under Engine Relevant Conditions
,”
Combust. Flame
,
93
(
4
), pp.
421
433
.10.1016/0010-2180(93)90142-P
27.
Kwak
,
K. H.
,
Jung
,
D.
, and
Borgnakke
,
C.
,
2014
, “
Enhanced Spray and Evaporation Model With Multi-Fuel Mixtures for Direct Injection Internal Combustion Engines
,”
Int. J. Engine Res.
,
15
(
4
), pp.
488
503
.10.1177/1468087413495203
28.
Pickett
,
L. M.
, and
Siebers
,
D. L.
,
2003
, “
Fuel Effects on Soot Processes of Fuel Jets at DI Diesel Conditions
,”
SAE
Technical Paper No. 2003-01-3080.10.4271/2003-01-3080
29.
Pickett
,
L. M.
, and
Hoogterp
,
L.
,
2008
, “
Fundamental Spray and Combustion Measurements of JP-8 at Diesel Conditions
,”
SAE Int. J. Commer. Veh.
,
1
(
1
), pp.
108
118
.10.4271/2008-01-1083
30.
ASTM
,
2010
, “
Standard Test Method for Cetane Number of Diesel Fuel Oil
,”
ASTM International
,
West Conshohocken, PA
, Standard No. D613-10a.
31.
ASTM
,
2013
, “
Standard Test Method for Determination of Ignition Delay and Derived Cetane Number (DCN) of Diesel Fuel Oils by Combustion in a Constant Volume Chamber
,”
ASTM International
,
West Conshohocken, PA
, Standard No. D6890-07a.
32.
Penyazkov
,
O. G.
,
Sevrouk
,
K. L.
,
Tangirala
,
V.
, and
Joshi
,
N.
,
2009
, “
Autoignitions of Diesel Fuel/Air Mixtures Behind Reflected Shock Waves
,”
4th European Combustion Meeting
,
Vienna
, Apr. 14–17.http://www.combustion.org.uk/ECM_2009/P810232.pdf
33.
Dean
,
A. J.
,
Penyazkov
,
O. G.
,
Sevruk
,
K. L.
, and
Varatharajan
,
B.
,
2007
, “
Autoignition of Surrogate Fuels at Elevated Temperatures and Pressures
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
2481
2488
.10.1016/j.proci.2006.07.162
34.
Livengood
,
J. C.
, and
Wu
,
P. C.
,
1955
, “
Correlation of Autoignition Phenomena in Internal Combustion Engines and Rapid Compression Machines
,”
Symp. (Int.) Combust.
,
5
(1), pp.
347
356
.10.1016/S0082-0784(55)80047-1
You do not currently have access to this content.