Interest in vertical-axis wind turbines (VAWTs) is experiencing a renaissance after most major research projects came to a standstill in the mid 1990s, in favor of conventional horizontal-axis turbines (HAWTs). Nowadays, the inherent advantages of the VAWT concept, especially in the Darrieus configuration, may outweigh their disadvantages in specific applications, like the urban context or floating platforms. To enable these concepts further, efficient, accurate, and robust aerodynamic prediction tools and design guidelines are needed for VAWTs, for which low-order simulation methods have not reached yet a maturity comparable to that of the blade element momentum theory for HAWTs' applications. The two computationally efficient methods that are presently capable of capturing the unsteady aerodynamics of Darrieus turbines are the double multiple streamtubes (DMS) theory, based on momentum balances, and the lifting line theory (LLT) coupled to a free vortex wake model. Both methods make use of tabulated lift and drag coefficients to compute the blade forces. Since the incidence angles range experienced by a VAWT blade is much wider than that of a HAWT blade, the accuracy of polars in describing the stall region and the transition toward the “thin plate like” behavior has a large effect on simulation results. This paper will demonstrate the importance of stall and poststall data handling in the performance estimation of Darrieus VAWTs. Using validated CFD simulations as a baseline, comparisons are provided for a blade in VAWT-like motion based on a DMS and a LLT code employing three sets of poststall data obtained from a wind tunnel campaign, XFoil predictions extrapolated with the Viterna–Corrigan model and a combination of them. The polar extrapolation influence on quasi-steady operating conditions is shown and azimuthal variations of thrust and torque are compared for exemplary tip-speed ratios (TSRs). In addition, the major relevance of a proper dynamic stall model into both the simulation methods is highlighted and discussed.

References

1.
Paraschivoiu
,
I.
,
2002
,
Wind Turbine Design With Emphasis on Darrieus Concept
,
Polytechnic International Press
,
Montreal, Canada
.
2.
Aslam Bhutta
,
M. M.
,
Hayat
,
N.
,
Farooq
,
A. U.
,
Ali
,
Z.
,
Jamil
,
Sh. R.
, and
Hussain
,
Z.
,
2012
, “
Vertical Axis Wind Turbine—A Review of Various Configurations and Design Techniques
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
1926
1939
.
3.
Bianchini
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
An Improved Model for the Performance Estimation of an H-Darrieus Wind Turbine in Skewed Flow
,”
Wind Eng.
,
36
(
6
), pp.
667
686
.
4.
Sharpe
,
T.
, and
Proven
,
G.
,
2010
, “
Crossflex: Concept and Early Development of a True Building Integrated Wind Turbine
,”
Energy Build.
,
42
(
12
), pp.
2365
2375
.
5.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Carnevale
,
E. A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
Feasibility Analysis of a Darrieus Vertical-Axis Wind Turbine Installation in the Rooftop of a Building
,”
Appl. Energy
,
97
, pp.
921
929
.
6.
Mertens
,
S.
,
van Kuik
,
G.
, and
van Bussel
,
G.
,
2003
, “
Performance of an H-Darrieus in the Skewed Flow on a Roof
,”
ASME J. Sol. Energy Eng.
,
125
(
4
), pp.
433
440
.
7.
Blonk
,
D. L.
,
2010
, “
Floating Vertical Axis Wind Turbines
,” M.Sc. thesis, TU Delft, The Netherlands.
8.
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
Design Guidelines for H-Darrieus Wind Turbines: Optimization of the Annual Energy Yield
,”
Energy Convers. Manage.
,
89
, pp.
690
707
.
9.
Deglaire
,
P.
,
2010
, “
Analytical Aerodynamic Simulation Tools for Vertical Axis Wind Turbines
,”
Digital Comprehensive Summaries of Uppsala Dissertations From the Faculty of Science and Technology
, Vol.
704
, Uppsala University, Uppsala, Sweden.http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A356811&dswid=8372
10.
Simão Ferreira
,
C.
,
Aagaard Madsen
,
H.
,
Barone
,
M.
,
Roscher
,
B.
,
Deglaire
,
P.
, and
Arduin
,
I.
,
2014
, “
Comparison of Aerodynamic Models for Vertical Axis Wind Turbines
,”
J. Phys.: Conf. Ser.
,
524
(
Conf. 1
), p.
012125
.
11.
Bianchini
,
A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2011
, “
Start-Up Behavior of a Three-Bladed H-Darrieus VAWT: Experimental and Numerical Analysis
,”
ASME
Paper No. GT2011-45882.
12.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2014
, “
Blade Design Criteria to Compensate the Flow Curvature Effects in H-Darrieus Wind Turbines
,”
ASME J. Turbomach.
,
137
(
1
), p.
011006
.
13.
Rainbird
,
J.
,
Bianchini
,
A.
,
Balduzzi
,
F.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
On the Influence of Virtual Camber Effect on Airfoil Polars for Use in Simulations of Darrieus Wind Turbines
,”
Energy Convers. Manage.
,
106
, pp.
373
384
.
14.
Lennie
,
M.
,
Pechlivanoglou
,
G.
,
Marten
,
D.
,
Nayeri
,
C. D.
, and
Paschereit
,
O.
,
2015
, “
A Review of Wind Turbine Polar Data and Its Effect on Fatigue Loads Simulation Accuracy
,”
ASME
Paper No. GT2015-43249.
15.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Rainbird
,
J.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines. Part 1—Flow Curvature Effects
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032602
.
16.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Rainbird
,
J.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines. Part II—Post-Stall Data Extrapolation Methods
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032603
.
17.
Linn
,
A. B.
,
1999
, “
Determination of Average Lift of a Rapidly Pitching Airfoil
,” M.Sc. thesis in Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA.
18.
Kirke
,
B. K.
,
1998
, “
Evaluation of Self-Starting Vertical Axis Wind Turbines for Standalone Applications
,”
Ph.D. thesis
, Griffith University, Gold Coast, Australia.https://www120.secure.griffith.edu.au/rch/file/d1a0b579-7560-8462-75da-f75671e8cce2/1/01front.pdf
19.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Critical Issues in the CFD Simulation of Darrieus Wind Turbines
,”
Renewable Energy
,
85
(
01
), pp.
419
435
.
20.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2004
, “
A Correlation-Based Transition Model Using Local Variables Part 1—Model Formulation
,”
ASME J. Turbomach.
,
128
(3), pp. 413–422.
21.
Campobasso
,
M. S.
, and
Ferrari
,
L.
,
2015
, “
Parametric and Comparative Assessment of Navier–Stokes CFD Methodologies for Darrieus Wind Turbine Performance Analysis
,”
ASME
Paper No. GT2015-42663.
22.
Daróczy
,
L.
,
Janiga
,
G.
,
Petrasch
,
K.
,
Webner
,
M.
, and
Thévenin
,
D.
,
2015
, “
Comparative Analysis of Turbulence Models for the Aerodynamic Simulation of H-Darrieus Rotors
,”
Energy
,
90
(Pt. 1), pp.
680
690
.
23.
Paraschivoiu
,
I.
, and
Delclaux
,
F.
,
1983
, “
Double Multiple Streamtube Model With Recent Improvements
,”
J. Energy
,
7
(
3
), pp.
250
255
.
24.
Marshall
,
L.
, and
Buhl
,
J.
, Jr.
,
2005
, “
A New Empirical Relationship Between Thrust Coefficient and Induction Factor for the Turbulent Windmill State
,” National Renewable Energy Laboratory, CO,
Report No. NREL/TP-500-36834
.http://www.nrel.gov/docs/fy05osti/36834.pdf
25.
Abbott
,
I. H.
, and
Von Doenhoff
,
A. E.
,
1959
,
Theory of Wing Sections
,
Dover Publications
,
New York
.
26.
Bianchini
,
A.
,
2011
, “
Performance Analysis and Optimization of a Darrieus VAWT
,” Ph.D. thesis, School of Energy Engineering and Innovative Industrial Technologies, University of Florence, Florence, Italy.
27.
Marten
,
D.
,
Wendler
,
J.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2013
, “
QBlade: An Open Source Tool for Design and Simulation of Horizontal And Vertical Axis Wind Turbines
,”
IJETAE
,
3
(3), pp.
264
269
.https://www.researchgate.net/profile/David_Marten2/publication/275638847_QBLADE_An_Open_Source_Tool_for_Design_and_Simulation_of_Horizontal_and_Vertical_Axis_Wind_Turbines/links/5540cb600cf2b7904369d80d.pdf
28.
Phillips
,
W. F.
, and
Snyder
,
D. O.
,
2000
, “
Modern Adaptation of Prandtl's Classic Lifting-Line Theory
,”
J. Aircr.
,
37
(
4
), pp.
662
670
.
29.
Leishman
,
J. G.
,
Bhagwat
,
M. J.
, and
Bagai
,
A.
,
2002
, “
Free-Vortex Filament Methods for the Analysis of Helicopter Rotor Wakes
,”
J. Aircr.
,
39
(
5
), pp.
759
775
.
30.
Marten
,
D.
,
Lennie
,
M.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. D.
, and
Paschereit
,
C. O.
,
2015
, “
Implementation, Optimization and Validation of a Nonlinear Lifting Line Free Vortex Wake Module Within the Wind Turbine Simulation Code QBlade
,”
ASME J. Gas Eng. Turbines Power
,
138
(7), p. 072601.
31.
Marten
,
D.
,
Lennie
,
M.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. D.
, and
Paschereit
,
C. O.
,
2015
, “
Integration of an Unsteady Nonlinear Lifting Line Free Vortex Wake Algorithm in a Wind Turbine Design Framework
,”
EWEA
Annual Meeting
, Paris, Nov. 17–20, Paper No. PO.280.https://www.researchgate.net/profile/David_Marten2/publication/284644420_Integration_of_an_Unsteady_Nonlinear_Lifting_Line_Free_Vortex_Wake_Algorithm_in_a_Wind_Turbine_Design_Framework/links/5655afed08aeafc2aabcbc8a.pdf
32.
Marten
,
D.
,
Lennie
,
M.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. D.
, and
Paschereit
,
C. O.
,
2016
, “
Nonlinear Lifting Line Theory Applied to Vertical Axis Wind Turbines: Development of a Practical Design Tool
,”
ISROMAC
Conference
, Honolulu, HI, Apr. 10–15, Paper No. 249.http://isromac-isimet.univ-lille1.fr/upload_dir/finalpaper/249.finalpaper.pdf
33.
Marten
,
D.
,
2015
, “
QBlade Guidelines v0.9
,” Version 1.0-07/15, TU Berlin, Berlin.
34.
Drela, M., and Youngren, H., 2013, “
XFoil User Guide
,” MIT Aero & Astro, Cambridge, MA, accessed Nov. 2, 2015, available online at: http://web.mit.edu/drela/Public/web/xfoil
35.
Viterna
,
L. A.
, and
Corrigan
,
R. D.
,
1982
, “
Fixed Pitch Rotor Performance of Large Horizontal Axis Wind Turbines
,” NASA Lewis Research Center, Cleveland, OH,
Publication No. 00/1982
https://www.researchgate.net/profile/Larry_Viterna/publication/234284033_Fixed_pitch_rotor_performance_of_large_horizontal_axis_wind_turbines/links/550d820e0cf2ac2905a7472d.pdf.
36.
Montgomerie
,
B.
,
2004
, “
Methods for Root Effects, Tip Effects and Extending the Angle of Attack Range to +-100 deg, With Application to Aerodynamics for Blades on Wind Turbines and Propellers
,” FOI Swedish Defence Research Agency, Stockholm, Sweden, Report No. FOI-R-1035-SE.
37.
Fujisawa
,
N.
, and
Shibuya
,
S.
,
2001
, “
Observations of Dynamic Stall on Darrieus Wind Turbine Blades
,”
J. Wind Eng. Ind. Aerodyn.
,
84
(
2
), pp.
201
214
.
38.
Lanzafame
,
R.
, and
Messina
,
M.
,
2012
, “
BEM Theory: How to Take Into Account the Radial Flow Inside of a 1-D Numerical Code
,”
Renewable Energy
,
39
(
1
), pp.
440
446
.
39.
Laneville
,
A.
, and
Vittecoq
,
P.
,
1986
, “
Dynamic Stall: The Case of the Vertical Axis Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
108
(2), pp.
10
145
.
40.
Berg
,
D. E.
,
1983
, “
Improved Double-Multiple Streamtube Model for the Darrieus-Type Vertical Axis Wind Turbine
,”
American Solar Energy Society Meeting
, Minneapolis, MN, Report No. SAND-82-2479C.http://www.osti.gov/scitech/biblio/6279384
41.
Leishman
,
J. G.
, and
Beddoes
,
T. S.
,
1986
, “
A Generalized Model for Airfoil Unsteady Aerodynamic Behaviour and Dynamic Stall Using the Indical Method
,” 42nd Annual Forum of the American Helicopter Society, Washington, DC.
42.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Dimensionless Numbers for the Assessment of Mesh and Timestep Requirements in CFD Simulations of Darrieus Wind Turbines
,”
Energy
,
97
, pp.
246
261
.
You do not currently have access to this content.