Darrieus vertical axis wind turbines (VAWTs) have been recently identified as the most promising solution for new types of applications, such as small-scale installations in complex terrains or offshore large floating platforms. To improve their efficiencies further and make them competitive with those of conventional horizontal axis wind turbines, a more in depth understanding of the physical phenomena that govern the aerodynamics past a rotating Darrieus turbine is needed. Within this context, computational fluid dynamics (CFD) can play a fundamental role, since it represents the only model able to provide a detailed and comprehensive representation of the flow. Due to the complexity of similar simulations, however, the possibility of having reliable and detailed experimental data to be used as validation test cases is pivotal to tune the numerical tools. In this study, a two-dimensional (2D) unsteady Reynolds-averaged Navier–Stokes (U-RANS) computational model was applied to analyze the wake characteristics on the midplane of a small-size H-shaped Darrieus VAWT. The turbine was tested in a large-scale, open-jet wind tunnel, including both performance and wake measurements. Thanks to the availability of such a unique set of experimental data, systematic comparisons between simulations and experiments were carried out for analyzing the structure of the wake and correlating the main macrostructures of the flow to the local aerodynamic features of the airfoils in cycloidal motion. In general, good agreement on the turbine performance estimation was constantly appreciated.

References

1.
Paraschivoiu
,
I.
,
2002
,
Wind Turbine Design With Emphasis on Darrieus Concept
,
Polytechnic International Press
,
Montreal, QC, Canada
.
2.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Carnevale
,
E. A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
Feasibility Analysis of a Darrieus Vertical-Axis Wind Turbine Installation in the Rooftop of a Building
,”
Appl. Energy
,
97
, pp.
921
929
.
3.
Borg
,
M.
,
Shires
,
A.
, and
Collu
,
M.
,
2014
, “
Offshore Floating Vertical Axis Wind Turbines, Dynamics Modelling State of the Art—Part I: Aerodynamics
,”
Renewable Sustainable Energy Rev.
,
39
, pp.
1214
1225
.
4.
Bianchini
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
An Improved Model for the Performance Estimation of an H-Darrieus Wind Turbine in Skewed Flow
,”
Wind Eng.
,
36
(
6
), pp.
667
686
.
5.
Mertens
,
S.
,
van Kuik
,
G.
, and
van Bussel
,
G.
,
2003
, “
Performance of an H-Darrieus in the Skewed Flow on a Roof
,”
ASME J. Sol. Energy Eng.
,
125
(
4
), pp.
433
440
.
6.
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
Design Guidelines for H-Darrieus Wind Turbines: Optimization of the Annual Energy Yield
,”
Energy Convers. Manage.
,
89
, pp.
690
707
.
7.
Simão Ferreira
,
C.
,
Aagaard Madsen
,
H.
,
Barone
,
M.
,
Roscher
,
B.
,
Deglaire
,
P.
, and
Arduin
,
I.
,
2014
, “
Comparison of Aerodynamic Models for Vertical Axis Wind Turbines
,”
J. Phys.: Conf. Ser.
,
524
, p.
012125
.
8.
Rainbird
,
J.
,
Bianchini
,
A.
,
Balduzzi
,
F.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
On the Influence of Virtual Camber Effect on Airfoil Polars for Use in Simulations of Darrieus Wind Turbines
,”
Energy Convers. Manage.
,
106
, pp.
373
384
.
9.
Balduzzi
,
F.
,
Drofelnik
,
J.
,
Bianchini
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
, and
Campobasso
,
M. S.
,
2017
, “
Darrieus Wind Turbine Blade Unsteady Aerodynamics: A Three-Dimensional Navier–Stokes CFD Assessment
,”
Energy
,
128
, pp.
550
563
.
10.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Critical Issues in the CFD Simulation of Darrieus Wind Turbines
,”
Renewable Energy
,
85
(
1
), pp.
419
435
.
11.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Persico
,
B.
,
Dossena
,
V.
, and
Battisti
,
L.
,
2017
, “
A Combined Experimental and Numerical Analysis of the Wake Structure and Performance of a H-Shaped Darrieus Wind Turbine
,”
First Global Power and Propulsion Society Forum
, Zurich, Switzerland, Jan. 16–18, pp. 1–8.https://www.scribd.com/document/355685835/A-Combined-Experimental-and-Numerical-Analysis-of-the-Wake-Structure-and-Performance-of-a-H-Shaped-Darrieus-Wind-Turbine
12.
Shamsoddin
,
S.
, and
Porté-Agel
,
F.
,
2014
, “
Large Eddy Simulation of Vertical Axis Wind Turbine Wakes
,”
Energies
,
7
(
2
), pp.
890
912
.
13.
Lam
,
H. F.
, and
Peng
,
H. Y.
,
2016
, “
Study of Wake Characteristics of a Vertical Axis Wind Turbine by Two- and Three-Dimensional Computational Fluid Dynamics Simulations
,”
Renewable Energy
,
90
, pp.
386
398
.
14.
Dossena
,
V.
,
Persico
,
G.
,
Paradiso
,
B.
,
Battisti
,
L.
,
Dell'Anna
,
S.
,
Brighenti
,
A.
, and
Benini
,
E.
,
2015
, “
An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in a Confined and Unconfined Environment
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051207
.
15.
Persico
,
G.
,
Dossena
,
V.
,
Paradiso
,
B.
,
Battisti
,
L.
,
Brighenti
,
A.
, and
Benini
,
E.
,
2017
, “
Time-Resolved Experimental Characterization of the Wakes Shed by H-Shaped and Troposkien Vertical Axis Wind Turbines
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
031203
.
16.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Bachant
,
P.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2017
, “
Effectiveness of Two-Dimensional CFD Simulations for Darrieus VAWTs: A Combined Numerical and Experimental Assessment
,”
Energy Convers. Manage.
,
136
, pp.
318
328
.
17.
Daróczy
,
L.
,
Janiga
,
G.
,
Petrasch
,
K.
,
Webner
,
M.
, and
Thévenin
,
D.
,
2015
, “
Comparative Analysis of Turbulence Models for the Aerodynamic Simulation of H-Darrieus Rotors
,”
Energy
,
90
(Pt. 1), pp.
680
690
.
18.
Maître
,
T.
,
Amet
,
E.
, and
Pellone
,
C.
,
2013
, “
Modeling of the Flow in a Darrieus Water Turbine: Wall Grid Refinement Analysis and Comparison With Experiments
,”
Renewable Energy
,
51
, pp.
497
512
.
19.
Nobile
,
R.
,
Vahdati
,
M.
,
Barlow
,
J. F.
, and
Mewburn-Crook
,
A.
,
2014
, “
Unsteady Flow Simulation of a Vertical Axis Augmented Wind Turbine: A Two-Dimensional Study
,”
J. Wind Eng. Ind. Aerodyn.
,
125
, pp.
168
179
.
20.
ANSYS
,
2015
, “
FLUENT Theory Guide, Release 16.0
,” ANSYS Inc., Canonsburg, PA.
21.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Dimensionless Numbers for the Assessment of Mesh and Timestep Requirements in CFD Simulations of Darrieus Wind Turbines
,”
Energy
,
97
, pp.
246
261
.
22.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Gigante
,
F. A.
,
Ferrara
,
G.
,
Campobasso
,
M. S.
, and
Ferrari
,
L.
,
2015
, “
Parametric and Comparative Assessment of Navier-Stokes CFD Methodologies for Darrieus Wind Turbine Performance Analysis
,”
ASME
Paper No. GT2015-42663.
23.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Influence of the Blade-Spoke Connection Point on the Aerodynamic Performance of Darrieus Wind Turbines
,”
ASME
Paper No. GT2016-57667.
24.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Rainbird
,
J.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines—Part 1: Flow Curvature Effects
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032602
.
25.
Menter
,
F.
,
1994
, “
Two-Equation Turbulence-Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
26.
Amet
,
E.
,
Maître
,
T.
,
Pellone
,
C.
, and
Achard
,
J.-L.
,
2009
, “
2D Numerical Simulations of Blade-Vortex Interaction in a Darrieus Turbine
,”
ASME J. Fluids Eng.
,
131
(
11
), p. 111103.
27.
Bianchini
,
A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2011
, “
Start-Up Behavior of a Three-Bladed H-Darrieus VAWT: Experimental and Numerical Analysis
,”
ASME
Paper No. GT2011-45882.
28.
Hoerner
,
S. F.
,
1965
,
Fluid-Dynamic Drag
,
Hoerner Fluid-Dynamics
, Bakersfield, CA.
29.
Bachant
,
P.
, and
Wosnik
,
M.
,
2015
, “
Characterising the Near-Wake of a Cross-Flow Turbine
,”
J. Turbul.
,
16
(
4
), pp.
392
410
.
30.
Bachant
,
P.
, and
Wosnik
,
M.
, 2015, “
UNH-RVAT Baseline Performance and Near-Wake Measurements: Reduced Dataset and Processing Code
,”
figshare
, London.
You do not currently have access to this content.