To improve the efficiency of Darrieus wind turbines, which still lacks from that of horizontal-axis rotors, computational fluid dynamics (CFD) techniques are now extensively applied, since they only provide a detailed and comprehensive flow representation. Their computational cost makes them, however, still prohibitive for routine application in the industrial context, which still makes large use of low-order simulation models like the blade element momentum (BEM) theory. These models have been shown to provide relatively accurate estimations of the overall turbine performance; conversely, the description of the flow field suffers from the strong approximations introduced in the modeling of the flow physics. In this study, the effectiveness of the simplified BEM approach was critically benchmarked against a comprehensive description of the flow field past the rotating blades coming from the combination of a two-dimensional (2D) unsteady CFD model and experimental wind tunnel tests; for both data sets, the overall performance and the wake characteristics on the midplane of a small-scale H-shaped Darrieus turbine were available. Upon examination of the flow field, the validity of the ubiquitous use of induction factors is discussed, together with the resulting velocity profiles upstream and downstream the rotor. Particular attention is paid on the actual flow conditions (i.e., incidence angle and relative speed) experienced by the airfoils in motion at different azimuthal angles, for which a new procedure for the postprocessing of CFD data is here proposed. Based on this model, the actual lift and drag coefficients produced by the airfoils in motion are analyzed and discussed, with particular focus on dynamic stall. The analysis highlights the main critical issues and flaws of the low-order BEM approach, but also sheds new light on the physical reasons why the overall performance prediction of these models is often acceptable for a first-design analysis.

References

1.
Sutherland
,
H. J.
,
Berg
,
D. E.
, and
Ashwill
,
T. D.
,
2012
, “
A Retrospective of VAWT Technology
,” Sandia National Laboratories, Alburquerque, NM, Report No.
SAND2012-0304
.https://prod.sandia.gov/techlib-noauth/access-control.cgi/2012/120304.pdf
2.
Damota
,
J.
,
Lamas
,
I.
,
Couce
,
A.
, and
Rodríguez
,
J.
,
2015
, “
Vertical Axis Wind Turbines: Current Technologies and Future Trends
,”
International Conference on Renewable Energies and Power Quality
(
ICREPQ'15
), La Coruña, Spain, Mar. 25–27, pp. 530–535.http://windharvest.com/wp-content/uploads/2017/04/Vertical-Axis-Wind-Turbines-Current-Technologies-and-Future-Trends-J.-Damota-I.-Lamas-A.-Couce-J.-Rodriguez-April-2015.pdf
3.
Carbó Molina
,
A.
,
Bartoli
,
G.
, and
De Troyer
,
T.
,
2017
, “
Generation of Uniform Turbulence Profiles in the Wind Tunnel for Urban VAWT Testing
,”
Wind Energy Exploitation in Urban Environment: TUrbWind 2017 Colloquium
,
Springer
, Cham, Switzerland.
4.
Bianchini
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
An Improved Model for the Performance Estimation of an H-Darrieus Wind Turbine in Skewed Flow
,”
Wind Eng.
,
36
(
6
), pp.
667
686
.
5.
Bianchini
,
A.
,
Cangioli
,
F.
,
Papini
,
S.
,
Rindi
,
A.
,
Carnevale
,
E. A.
, and
Ferrari
,
L.
,
2015
, “
Structural Analysis of a Small H-Darrieus Wind Turbine Using Beam Models: Development and Assessment
,”
ASME J. Turbomach.
,
137
(
1
), p. 011003.
6.
Mertens
,
S.
,
van Kuik
,
G.
, and
van Bussel
,
G.
,
2003
, “
Performance of an H-Darrieus in the Skewed Flow on a Roof
,”
ASME J. Sol. Energy Eng.
,
125
(
4
), pp.
433
440
.
7.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Carnevale
,
E. A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
Feasibility Analysis of a Darrieus Vertical-Axis Wind Turbine Installation in the Rooftop of a Building
,”
Appl. Energy
,
97
, pp.
921
929
.
8.
Blonk
,
D. L.
,
2010
, “
Floating Vertical Axis Wind Turbines
,” M.Sc. thesis, TU Delft, Delft, The Netherlands.
9.
Schmidt Paulsen
,
U.
,
Madsen
,
H. A.
,
Hattel
,
J. H.
,
Baran
,
I.
, and
Nielsen
,
P. H.
,
2013
, “
Design Optimization of a 5 MW Floating Offshore Vertical-Axis Wind Turbine
,”
Energy Procedia
,
35
, pp.
22
32
.
10.
Aslam Bhutta
,
M. M.
,
Hayat
,
N.
,
Farooq
,
A. U.
,
Ali
,
Z.
,
Jamil
,
S. R.
, and
Hussain
,
Z.
,
2012
, “
Vertical Axis Wind Turbine—A Review of Various Configurations and Design Techniques
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
1926
1939
.
11.
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
Design Guidelines for H-Darrieus Wind Turbines: Optimization of the Annual Energy Yield
,”
Energy Convers. Manage.
,
89
, pp.
690
707
.
12.
Paraschivoiu
,
I.
,
2002
,
Wind Turbine Design With Emphasis on Darrieus Concept
,
Polytechnic International Press
,
Montreal, QC, Canada
.
13.
Alaimo
,
A.
,
Esposito
,
A.
,
Messineo
,
A.
,
Orlando
,
C.
, and
Tumino
,
D.
,
2015
, “
3D CFD Analysis of a Vertical Axis Wind Turbine
,”
Energies
,
8
(
4
), pp.
3013
3033
.
14.
Balduzzi
,
F.
,
Drofelnik
,
J.
,
Bianchini
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
, and
Campobasso
,
M. S.
,
2017
, “
Darrieus Wind Turbine Blade Unsteady Aerodynamics: A Three-Dimensional Navier–Stokes CFD Assessment
,”
Energy
,
128
, pp.
550
563
.
15.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Dimensionless Numbers for the Assessment of Mesh and Timestep Requirements in CFD Simulations of Darrieus Wind Turbines
,”
Energy
,
97
, pp.
246
261
.
16.
Simão Ferreira
,
C.
,
Aagaard Madsen
,
H.
,
Barone
,
M.
,
Roscher
,
B.
,
Deglaire
,
P.
, and
Arduin
,
I.
,
2014
, “
Comparison of Aerodynamic Models for Vertical Axis Wind Turbines
,”
J. Phys.: Conf. Ser.
,
524
, p.
012125
.
17.
Deglaire
,
P.
,
2010
, “
Analytical Aerodynamic Simulation Tools for Vertical Axis Wind Turbines
,”
Doctoral thesis
, Faculty of Science and Technology, Uppsala University, Uppsala, Sweden.https://www.diva-portal.org/smash/get/diva2:356811/FULLTEXT02.pdf
18.
Marten
,
D.
,
Bianchini
,
A.
,
Pechlivanoglou
,
G.
,
Balduzzi
,
F.
,
Nayeri
,
C. N.
,
Ferrara
,
G.
,
Paschereit
,
C. O.
, and
Ferrari
,
L.
,
2016
, “
Effects of Airfoil's Polar Data in the Stall Region on the Estimation of Darrieus Wind Turbines Performance
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
0226069
.
19.
Rainbird
,
J.
,
Bianchini
,
A.
,
Balduzzi
,
F.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
On the Influence of Virtual Camber Effect on Airfoil Polars for Use in Simulations of Darrieus Wind Turbines
,”
Energy Convers. Manage.
,
106
, pp.
373
384
.
20.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Virtual Incidence Effect on Rotating Airfoils in Darrieus Wind Turbines
,”
Energy Convers. Manage.
,
111
, pp.
329
338
.
21.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2014
, “
Blade Design Criteria to Compensate the Flow Curvature Effects in H-Darrieus Wind Turbines
,”
ASME J. Turbomach.
,
137
(
1
), p.
011006
.
22.
Marten
,
D.
,
Lennie
,
M.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. D.
, and
Paschereit
,
C. O.
,
2017
, “
Nonlinear Lifting Line Theory Applied to Vertical Axis Wind Turbines: Development of a Practical Design Tool
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021107
.
23.
Saverin
,
J.
,
Persico
,
G.
,
Marten
,
D.
,
Holst
,
D.
,
Pechlivanoglou
,
G.
,
Paschereit
,
C.
, and
Dossena
,
V.
,
2018
, “
Comparison of Experimental and Numerically Predicted Three-Dimensional Wake Behaviour of a Vertical Axis Wind Turbine
,”
ASME J. Eng. Gas Turbines Power
(accepted).
24.
Van Garrel
,
A.
,
2003
, “
Development of a Wind Turbine Aerodynamics Simulation Module
,” Energy Research Centre of the Netherlands, Petten, The Netherlands, Technical Report No.
ECN-C-03-079
.https://www.researchgate.net/publication/299643591_Development_of_a_Wind_Turbine_Aerodynamics_Simulation_Module
25.
Dossena
,
V.
,
Persico
,
G.
,
Paradiso
,
B.
,
Battisti
,
L.
,
Dell'Anna
,
S.
,
Brighenti
,
A.
, and
Benini
,
E.
,
2015
, “
An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in a Confined and Unconfined Environment
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051207
.
26.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Persico
,
B.
,
Dossena
,
V.
, and
Battisti
,
L.
,
2017
, “
Detailed Analysis of the Wake Structure of a Straight-Blade H-Darrieus Wind Turbine by Means of Wind Tunnel Experiments and CFD Simulations
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032604
.
27.
ANSYS
,
2015
, “
FLUENT® 16.0 Theory Guide
,” ANSYS Inc., Canonsburg, PA.
28.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Critical Issues in the CFD Simulation of Darrieus Wind Turbines
,”
Renewable Energy
,
85
(
01
), pp.
419
435
.
29.
Menter
,
F.
,
1994
, “
Two-Equation Turbulence-Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
30.
Amet
,
E.
,
Maître
,
T.
,
Pellone
,
C.
, and
Achard
,
J. L.
,
2009
, “
2D Numerical Simulations of Blade-Vortex Interaction in a Darrieus Turbine
,”
ASME J. Fluids Eng.
,
131
(
11
), p. 111103.
31.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Gigante
,
F. A.
,
Ferrara
,
G.
,
Campobasso
,
M. S.
, and
Ferrari
,
L.
,
2015
, “
Parametric and Comparative Assessment of Navier–Stokes CFD Methodologies for Darrieus Wind Turbine Performance Analysis
,”
ASME
Paper No. GT2015-42663.
32.
Bianchini
,
A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2011
, “
Start-Up Behavior of a Three-Bladed H-Darrieus VAWT: Experimental and Numerical Analysis
,”
ASME
Paper No. GT2011-45882.
33.
Paraschivoiu
,
I.
, and
Delclaux
,
F.
,
1983
, “
Double Multiple Streamtube Model With Recent Improvements
,”
J. Energy
,
7
(
3
), pp.
250
255
.
34.
Marshall
,
L.
, and
Buhl
,
J.
, Jr.
,
2005
, “
A New Empirical Relationship Between Thrust Coefficient and Induction Factor for the Turbulent Windmill State
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-500-36834
.https://www.nrel.gov/docs/fy05osti/36834.pdf
35.
Abbott
,
I. H.
, and
Von Doenhoff
,
A. E.
,
1959
,
Theory of Wing Sections
,
Dover Publications
,
Mineola, NY
.
36.
Migliore
,
P. G.
,
Wolfe
,
W. P.
, and
Fanucci
,
J. B.
,
1980
, “
Flow Curvature Effects on Darrieus Turbine Blade Aerodynamics
,”
J. Energy
,
4
(
2
), pp.
49
55
.
37.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Rainbird
,
J.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines—Part 1: Flow Curvature Effects
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032602
.
38.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2017
, “
Aerodynamics of Darrieus Wind Turbines Airfoils: The Impact of Pitching Moment
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
042602
.
39.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Aerodynamics of Darrieus Wind Turbines Airfoils During Start-Up
,”
ASME
Paper No. GT2016-57679.
40.
Linn
,
A. B.
,
1999
, “
Determination of Average Lift of a Rapidly Pitching Airfoil
,”
M.Sc. thesis
, Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA.https://web.wpi.edu/Pubs/ETD/Available/etd-0512100-095442/unrestricted/linn.pdf
41.
Viterna
,
L. A.
, and
Janetzke
,
D. C.
,
1982
, “
Theoretical and Experimental Power From Large Horizontal-Axis Wind Turbines
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No.
NASA-TM-82944
.https://ntrs.nasa.gov/search.jsp?R=19820025954
42.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Rainbird
,
J.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines—Part 2: Post-Stall Data Extrapolation Methods
,”
ASME
Paper No. GT2015-42285.
43.
Massé
,
B.
,
1981
, “
Description De Deux Programmes D'ordinateur Pour Le Calcul Des Performances Et Des Charges Aérodynamiques Pour Les Éoliennes à Axe Vertical
,” Varennes, QC, Canada, Technical Report No. IREQ-2379.
44.
Drela, M., and Youngren, H., 2001, “
XFoil User Guide
,” MIT Aeronautics and Astronautics Department, Cambridge, MA, accessed July 24, 2018, http://web.mit.edu/drela/Public/web/xfoil/
45.
Deperrois, A., 2018, “
XFLR5 User Guide
,” epub, accessed July 24, 2018, accessed Oct. 12, 2017, www.xflr5.com/xflr5.htm
46.
Persico
,
G.
,
Dossena
,
V.
,
Paradiso
,
B.
,
Battisti
,
L.
,
Brighenti
,
A.
, and
Benini
,
E.
,
2017
, “
Time-Resolved Experimental Characterization of the Wakes Shed by H-Shaped and Troposkien Vertical Axis Wind Turbines
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
031203
.
47.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Critical Analysis of Dynamic Stall Models in Low-Order Simulation Models for Vertical-Axis Wind Turbines
,”
Energy Procedia
,
101
, pp.
488
495
.
48.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Bachant
,
P.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2017
, “
Effectiveness of Two-Dimensional CFD Simulations for Darrieus VAWTs: A Combined Numerical and Experimental Assessment
,”
Energy Convers. Manage.
,
136
, pp.
318
328
.
49.
Saverin
,
J.
, and
Frank
,
S.
,
2015
, “
The Loading Cycle of a H-Blade Type Vertical Axis Wind Turbine
,”
ASME
Paper No. GT2015-42185.
50.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
A Computational Procedure to Define the Incidence Angle on Airfoils Rotating Around an Axis Orthogonal to Flow Direction
,”
Energy Convers. Manage.
,
126
, pp.
790
798
.
51.
Marten
,
D.
,
Lennie
,
M.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. D.
, and
Paschereit
,
C. O.
,
2015
, “
Implementation, Optimization and Validation of a Nonlinear Lifting Line Free Vortex Wake Module Within the Wind Turbine Simulation Code QBlade
,”
ASME
Paper No. GT2015-43265.
52.
Marten
,
D.
,
Lennie
,
M.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. D.
, and
Paschereit
,
C. O.
,
2015
, “
Integration of an Unsteady Nonlinear Lifting Line Free Vortex Wake Algorithm in a Wind Turbine Design Framework
,”
EWEA Annual Meeting
, Paris, France, Nov. 17–20.https://www.researchgate.net/publication/284644420_Integration_of_an_Unsteady_Nonlinear_Lifting_Line_Free_Vortex_Wake_Algorithm_in_a_Wind_Turbine_Design_Framework
53.
Holst
,
D.
,
Balduzzi
,
F.
, Bianchini, A., Ferrara, G., Ferrari, L., Church, B., Wegner, F., Pechlivanoglou, G., Nayeri, C. N., and Paschereit, C. O.,
2018
, “
Static and Dynamic Analysis of a NACA 0021 Airfoil Section at Low Reynolds Numbers Based on Experiments and CFD
,”
ASME Paper No. GT2018-75426
.
You do not currently have access to this content.