Abstract

Axial-fuel-staged combustion is a promising technology to reduce NOx emission at high turbine inlet temperatures and provide extended gas turbine operational flexibility. To investigate the emissions characteristics of the axial-fuel-staged combustion, a staged model combustor was constructed and a parametric study was performed at atmospheric pressure. Fuel distribution, equivalence ratio, and jet velocity effects on the emissions characteristics have been studied in the present research. Results show that the influence of fuel distribution on emissions is depending on the combustor outlet temperature. The NOx emissions increase with secondary fuel fraction when the combustor outlet temperature is low but decrease when the combustor outlet temperature is high. Investigation of the equivalence ratio on each stage shows that a lower relative NOx increase in secondary combustion zone is achieved at higher first-stage equivalence ratio. Moreover, the secondary stage jet velocity was varied to study the jet mixing influence on the emissions. The results show that a higher jet velocity will enhance the mixing between the secondary jet and the upstream first-stage burnt gases, producing lower NOx emissions. Finally, a simplified axial-fuel-staged combustion chemical reactors network (CRN) model was established to study the mixing of the secondary fresh fuel/air mixture and the first-stage burnt gases. The CRN modeling results show that a poor mixing in the secondary stage will significantly increase the NOx emission, which means that the mixing enhancement at the secondary stage is important for the axial-fuel-staged combustor design.

References

1.
Cooper
,
C. D.
, and
Alley
,
F. C.
,
2011
,
Air Pollution Control: A Design Approach
,
Waveland Press,
Long Grove, IL.
2.
Lieuwen
,
T.
,
Chang
,
M.
, and
Amato
,
A.
,
2013
, “
Stationary Gas Turbine Combustion: Technology Needs and Policy Considerations
,”
Combust. Flame
,
160
(
8
), pp.
1311
1314
.10.1016/j.combustflame.2013.05.001
3.
Rezvani
,
R.
,
2010
, “
A Conceptual Methodology for the Prediction of Engine Emissions
,”
Ph.D. dissertation
,
Georgia Institute of Technology,
Atlanta, GA.http://hdl.handle.net/1853/42932
4.
Goh
,
E.
,
Sirignano
,
M.
,
Li
,
J.
,
Nair
,
V.
,
Emerson
,
B.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2019
, “
Prediction of Minimum Achievable NOx Levels for Fuel-Staged Combustors
,”
Combust. Flame
,
200
, pp.
276
285
.10.1016/j.combustflame.2018.11.027
5.
Qian
,
W.
,
Zhu
,
M.
, and
Li
,
S.
,
2017
, “
A Kinetics Study on the NOx Emissions of Axially Staged Combustion System for Gas Turbine Applications
,”
Proceedings of Global Power and Propulsion Forum
, Shanghai, China, Oct. 30–Nov. 1, GPPS Paper No.
2017-16
.https://www.gpps.global/documents/events/shanghai17/papers/combustor-combustion/GPPS-AME17-16.pdf
6.
Ahrens
,
D.
,
Kolb
,
M.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2016
, “
Influence of Pre-Flame and Post-Flame Mixing on NOx-Formation in a Reacting Premixed Jet in Hot Cross Flow
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
081506
.10.1115/GT2015-42224
7.
Ahrens
,
D.
,
2015
, “
NOx-Formation in Reacting Premixed Jets in Hot Cross Flow
,”
Ph.D. dissertation
,
Technical University Munich
, Garching, Germany.https://www.td.mw.tum.de/fileadmin/w00bso/www/Forschung/Dissertationen/ahrens15.pdf
8.
Hoferichter
,
V.
,
Ahrens
,
D.
,
Kolb
,
M.
, and
Sattelmayer
,
T.
,
2014
, “
A Reactor Model for the NOx Formation in a Reacting Jet in Hot Cross Flow Under Atmospheric and High Pressure Conditions
,”
ASME
Paper No. GT2014-26711. 10.1115/GT2014-26711
9.
Prathap
,
C.
,
Galeazzo
,
F. C. C.
,
Kasabov
,
P.
,
Habisreuther
,
P.
, and
Zarzalis
,
N.
,
2012
, “
Analysis of NOx Formation in an Axially Staged Combustion System at Elevated Pressure Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
031507
.10.1115/1.4004720
10.
Sidey
,
J.
, and
Mastorakos
,
E.
,
2015
, “
Visualization of MILD Combustion From Jets in Cross-Flow
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3537
3545
.10.1016/j.proci.2014.07.028
11.
Tu
,
Y.
,
Su
,
K.
,
Liu
,
H.
,
Wang
,
Z.
,
Xie
,
Y.
,
Zheng
,
C.
, and
Li
,
W.
,
2017
, “
MILD Combustion of Natural Gas Using Low Preheating Temperature Air in an Industrial Furnace
,”
Fuel Process. Technol.
,
156
, pp.
72
81
.10.1016/j.fuproc.2016.10.024
12.
Kruse
,
S.
,
Kerschgens
,
B.
,
Berger
,
L.
,
Varea
,
E.
, and
Pitsch
,
H.
,
2015
, “
Experimental and Numerical Study of MILD Combustion for Gas Turbine Applications
,”
ApEn
,
148
, pp.
456
465
.10.1016/j.apenergy.2015.03.054
13.
Cavaliere
,
A.
, and
de Joannon
,
M.
,
2004
, “
Mild Combustion
,”
Prog. Energy Combust. Sci.
,
30
(
4
), pp.
329
366
.10.1016/j.pecs.2004.02.003
14.
Winkler
,
D.
,
Geng
,
W.
,
Engelbrecht
,
G.
,
Stuber
,
P.
,
Knapp
,
K.
, and
Griffin
,
T.
,
2017
, “
Staged Combustion Concept for Gas Turbines
,”
J. Global Power Propul. Soc.
,
1
, pp.
184
194
.10.22261/JGPPS.CVLCX0
15.
Saitoh
,
T.
,
Nakasu
,
T.
,
Hiroi
,
T.
,
Yamada
,
H.
, and
Hayashi
,
S.
,
2016
, “
Emissions Characteristics of Combustion of Lean Secondary Premixed Gas Jets Injected Into Burned Gas From Primary Stage by Lean Premixed Combustion Supported by Reverse Jet Flame Holding
,”
ASME
Paper No. GT2016-56826. 10.1115/GT2016-56826
16.
Adachi
,
S.
,
Iwamoto
,
A.
,
Hayashi
,
S.
,
Yamada
,
H.
, and
Kaneko
,
S.
,
2007
, “
Emissions in Combustion of Lean Methane-Air and Biomass-Air Mixtures Supported by Primary Hot Burned Gas in a Multi-Stage Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3131
3138
.10.1016/j.proci.2006.07.239
17.
Hayashi
,
S.
,
Yamada
,
H.
, and
Makida
,
M.
,
2005
, “
Extending Low-NOx Operating Range of a Lean Premixed–Prevaporized Gas Turbine Combustor by Reaction of Secondary Mixtures Injected Into Primary Stage Burned Gas
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2903
2911
.10.1016/j.proci.2004.08.112
18.
Hayashi
,
S.
, and
Yamada
,
H.
,
2000
, “
NOx Emissions in Combustion of Lean Premixed Mixtures Injected Into Hot Burned Gas
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
2443
2449
.10.1016/S0082-0784(00)80658-X
19.
Lamont
,
W. G.
,
Roa
,
M.
,
Meyer
,
S. E.
, and
Lucht
,
R. P.
,
2012
, “
Emission Measurements and CH* Chemiluminescence of a Staged Combustion Rig for Stationary Gas Turbine Applications
,”
ASME J. Eng. Gas Turbines Power
,
134
, p.
081502
.10.1115/1.4006604
20.
Pennell
,
D. A.
,
Bothien
,
M. R.
,
Ciani
,
A.
,
Granet
,
V.
,
Singla
,
G.
,
Thorpe
,
S.
,
Wickstroem
,
A.
,
Oumejjoud
,
K.
, and
Yaquinto
,
M.
,
2017
, “
An Introduction to the Ansaldo GT36 Constant Pressure Sequential Combustor
,”
ASME
Paper No. GT2017-64790. 10.1115/GT2017-64790
21.
Karim
,
H.
,
Natarajan
,
J.
,
Narra
,
V.
,
Cai
,
J.
,
Rao
,
S.
,
Kegley
,
J.
, and
Citeno
,
J.
,
2017
, “
Staged Combustion System for Improved Emissions Operability and Flexibility for 7HA Class Heavy Duty Gas Turbine Engine
,”
ASME
Paper No. GT2017-63998. 10.1115/GT2017-63998
22.
Ahrens
,
D.
,
Kolb
,
M.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2014
, “
NOx Formation in a Reacting Premixed Jet in Hot Cross Flow
,”
ASME
Paper No. GT2014-26139. 10.1115/GT2014-26139
23.
Zhang
,
H.
,
Zhang
,
Z.
,
Xiong
,
Y.
,
Liu
,
Y.
, and
Xiao
,
Y.
,
2018
, “
Experimental and Numerical Investigations of MILD Combustion in a Model Combustor Applied for Gas Turbine
,”
ASME
Paper No. GT2018-76253. 10.1115/GT2018-76253
24.
Kolb
,
M.
,
Ahrens
,
D.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2015
, “
A Model for Predicting the Lift-Off Height of Premixed Jets in Vitiated Cross Flow
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
081901
.10.1115/1.4032421
25.
Gevorkyan
,
L.
,
Shoji
,
T.
,
Peng
,
W. Y.
, and
Karagozian
,
A. R.
,
2018
, “
Influence of the Velocity Field on Scalar Transport in Gaseous Transverse Jets
,”
J. Fluid Mech.
,
834
, pp.
173
219
.10.1017/jfm.2017.621
26.
Sirignano
,
M. D.
,
Nair
,
V.
,
Emerson
,
B.
,
Seitzman
,
J.
, and
Lieuwen
,
T. C.
,
2019
, “
Nitrogen Oxide Emissions From Rich Premixed Reacting Jets in a Vitiated Crossflow
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5393
5400
.10.1016/j.proci.2018.05.088
27.
Dayton
,
J. W.
,
Linevitch
,
K.
, and
Cetegen
,
B. M.
,
2019
, “
Ignition and Flame Stabilization of a Premixed Reacting Jet in Vitiated Crossflow
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2417
2424
.10.1016/j.proci.2018.08.051
28.
Roa
,
M.
,
Lamont
,
W. G.
,
Meyer
,
S. E.
, and
Lucht
,
R. P.
,
2012
, “
Emission Measurements and OH-PLIF of Reacting Hydrogen Jets in Vitiated Crossflow for Stationary Gas Turbines
,”
ASME
Paper No. GT2012-68711. 10.1115/GT2012-68711
29.
Innocenti
,
A.
,
Andreini
,
A.
,
Bertini
,
D.
,
Facchini
,
B.
, and
Motta
,
M.
,
2018
, “
Turbulent Flow-Field Effects in a Hybrid CFD-CRN Model for the Prediction of NOx and CO Emissions in Aero-Engine Combustors
,”
Fuel
,
215
, pp.
853
864
.10.1016/j.fuel.2017.11.097
30.
Abuelnuor
,
A. A. A.
,
Wahid
,
M. A.
,
Mohammed
,
H. A.
, and
Saat
,
A.
,
2014
, “
Flameless Combustion Role in the Mitigation of NOx Emission: A Review
,”
IJER
,
38
(
7
), pp.
827
846
.10.1002/er.3167
31.
Li
,
P.
,
Wang
,
F.
,
Mi
,
J.
,
Dally
,
B. B.
,
Mei
,
Z.
,
Zhang
,
J.
, and
Parente
,
A.
,
2014
, “
Mechanisms of NO Formation in MILD Combustion of CH4/H2 Fuel Blends
,”
Int. J. Hydrogen Energy
,
39
(
33
), pp.
19187
19203
.10.1016/j.ijhydene.2014.09.050
You do not currently have access to this content.