Abstract

Frequent changes in operating conditions can result in the great loss of the service life of gas turbines that work at high speed, high pressure, and high temperature. To improve the control system of gas turbines is of great significance for extending the service life, boosting the dynamic performance, and reducing the maintenance cost. Due to good dynamic response characteristics, the present control methods are neither capable of tackling the nonlinearity of the system nor adaptive to the frequent variations of operating conditions. As a powerful learning paradigm, reinforcement learning (RL) can explore the operation environment and make decisions adaptively. A novel intelligent control framework for the gas turbine control system is constructed by coupling a RL agent with a dynamic simulation model and a damage estimation model. Compared with the proportion, integral, differential (PID) and fuzzy control, the proposed method achieves better performance in both extending life and depicting dynamic characteristics, and reduces the overall damage to as low as 0.01% in the loading process. Besides, the overshoot and the adjusting time of the novel approach are lower and shorter than those of PID and fuzzy control by more than 90% and about 14%, respectively, but it takes longer to accelerate. Finally, the effect of different types of RL agents and their hyperparameters are investigated. The results show that the deep deterministic policy gradient (DDPG) agent can achieve the best performance. Furthermore, in addition to extending the life and improving the dynamic performance, the controlling framework presented is recommended to construct an intelligent dynamic control system for achieving various purposes.

References

1.
Simone
,
C.
,
Stefania
,
D. G.
,
Roberto
,
D. P.
,
Alessandro
,
R.
,
Francesco
,
F.
, and
Umberto
,
D.
,
2010
, “
Gas Turbines Fired With Biomass Pyrolysis Syngas: Analysis of the Overheating of Hot Gas Path Components
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061401
.10.1115/1.4000134
2.
Zhou
,
D. J.
,
Zhang
,
H. S.
, and
Weng
,
S. L.
,
2015
, “
A New Gas Path Fault Diagnostic Method of Gas Turbine Based on Support Vector Machine
,”
ASME J. Eng. Gas Turbines Power
,
137
(
10
), p.
102605
.10.1115/1.4030277
3.
Daleo
,
J. A.
,
Ellison
,
K. A.
, and
Boone
,
D. H.
,
2002
, “
Metallurgical Considerations for Life Assessment and the Safe Refurbishment and Requalification of Gas Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
571
579
.10.1115/1.1455638
4.
Funke
,
H. W.
,
Börner
,
S.
,
Hendrick
,
P.
, and
Recker
,
E.
,
2011
, “
Modification and Testing of an Engine and Fuel Control System for a Hydrogen Fuelled Gas Turbine
,”
Prog. Propul. Phys., EDP Sci.
,
2
, pp.
475
486
.10.1051/eucass/201102475
5.
Willam
,
R. S.
, and
David
,
G. B.
,
2015
, “
Experimental Thermal Field Measurements of Film Cooling Above the Suction Surface of a Turbine Vane
,”
ASME J. Eng. Gas Turbines Power
,
137
(
10
), p.
102604
.10.1115/1.4030263
6.
Mu
,
J.
,
Rees
,
D.
, and
Liu
,
G. P.
,
2005
, “
Advanced Controller Design for Aircraft Gas Turbine Engines
,”
Control Eng. Pract.
,
13
(
8
), pp.
1001
1015
.10.1016/j.conengprac.2004.11.001
7.
Hwa
,
K. D.
,
2004
, “
Neuro-Fuzzy Tuning of PID Controller for Control of Actual Gas Turbine Power
,”
CIMSA IEEE,
Boston, MA, July 14–16, pp.
192
197
.10.1109/CIMSA.2004.1397260
8.
Acharya
,
R.
, and
Das
,
S.
,
2015
, “
Additive Manufacturing of IN100 Superalloy Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair: Process Development, Modeling, Microstructural Characterization, and Process Control
,”
Metall. Mater. Trans. A
,
46
(
9
), pp.
3864
3875
.10.1007/s11661-015-2912-6
9.
Tang
,
L.
, and
Allan
,
J. V.
,
2019
, “
Intelligent Reasoning for Gas Turbine Fault Isolation and Ambiguity Resolution
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041023
.10.1115/1.4040899
10.
Wang
,
J.
,
Zhang
,
C.
, and
Jing
,
Y.
,
2008
, “
Adaptive PID Control With BP Neural Network Self-Tuning in Exhaust Temperature of Micro Gas Turbine
,”
Third IEEE Conference on Industrial Electronics and Applications
,
IEEE
,
Singapore
, June 3–5, pp.
532
537
.10.1109/ICIEA.2008.4582572
11.
Patiala
,
P.
, and
Colleges
,
G. G. S.
,
2014
, “
An Efficient fuzzy-GA Flow Control of Turbine Compressor System: A Process Control Case Study
,”
Int. J. Adv. Comput. Technol.
,
2
(
4
), pp.
128
139
.10.4156/ijact.vol2.issue4.14
12.
Marzoughi
,
A.
,
Selamat
,
H.
, and
Marzoughi
,
F.
,
2010
, “
Application of Particle Swarm Optimization Approach to Improve PID Performance for a Gas Turbine Temperature Control System
,” IEEE Student Conference on Research and Development (
SCOReD
), Putrajaya, Malaysia, Dec. 13–14, pp.
224
229
.10.1109/SCORED.2010.5704006
13.
Deng
,
W.
, and
Zhang
,
H.
,
2006
, “
Fuzzy Neural Networks Adaptive Control of Micro Gas Turbine With Prediction Model
,”
IEEE International Conference on Networking, Sensing and Control
, Ft. Lauderdale, FL, Apr. 23–25, pp.
1053
1058
.10.1109/ICNSC.2006.1673297
14.
Zhou
,
D.
,
Yao
,
Q.
,
Wu
,
H.
,
Ma
,
S.
, and
Zhang
,
H.
,
2020
, “
Fault Diagnosis of Gas Turbine Based on Partly Interpretable Convolutional Neural Networks
,”
Energy
,
200
, p.
117467
.10.1016/j.energy.2020.117467
15.
Xia
,
D.
,
2008
, “
Gas Turbine Diagnostic Theory and Experiment Research Based on Thermal Parameters
,” Ph.D. thesis,
Shanghai Jiao Tong University
,
Shanghai, China
.
16.
Zhou
,
D. J.
,
Zhang
,
H. S.
,
Li
,
Y. G.
, and
Weng
,
S. L.
,
2016
, “
A Dynamic Reliability-Centered Maintenance Analysis Method for Natural Gas Compressor Station Based on Diagnostic and Prognostic Technology
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
061601
.10.1115/1.4031644
17.
Holländer
,
D.
,
Kulawinski
,
D.
,
Weidner
,
A.
,
Thiele
,
M.
,
Biermann
,
H.
, and
Gampe
,
U.
,
2016
, “
Small-Scale Specimen Testing for Fatigue Life Assessment of Service-Exposed Industrial Gas Turbine Blades
,”
Int. J. Fatigue
,
92
, pp.
262
271
.10.1016/j.ijfatigue.2016.07.014
18.
Mcclung
,
R. C.
,
Enright
,
M. P.
,
Millwater
,
H. R.
,
Leverant
,
G. R.
, and
Hudak
,
S. J.
,
2004
, “
A Software Framework for Probabilistic Fatigue Life Assessment of Gas Turbine Engine Rotors
,”
J. ASTM Int.
,
1
(
8
), pp.
11563
11516
.10.1520/JAI11563
19.
Abu
,
A. O.
,
Eshati
,
S.
,
Laskaridis
,
P.
, and
Singh
,
R.
,
2014
, “
Aero-Engine Turbine Blade Life Assessment Using the Neu/Sehitoglu Damage Model
,”
Int. J. Fatigue
,
61
, pp.
160
169
.10.1016/j.ijfatigue.2013.11.015
20.
Nayebi
,
A.
,
Ranjbar
,
H.
, and
Rokhgireh
,
H.
,
2013
, “
Analysis of Unified Continuum Damage Mechanics Model of Gas Turbine Rotor Steel: Life Assessment
,”
Proc. Inst. Mech. Eng., Part L
,
227
(
3
), pp.
216
225
.10.1177/1464420712456513
21.
Bazhenov
,
V. A.
,
Gulyar
,
A. I.
,
Piskunov
,
S. O.
, and
Andrievskii
,
V. P.
,
2013
, “
Design Life Assessment of the Blade Root of a Gas Turbine Unit Under Thermomechanical Loading
,”
Strength Mater.
,
45
(
3
), pp.
329
339
.10.1007/s11223-013-9463-0
22.
Minsky
,
M. L.
,
1954
, “
Theory of Neural-Analog Reinforcement Systems and Application to the Brain-Model Problem
,”
Ph.D. thesis
,
Princeton University
,
Princeton, NJ
. https://books.google.co.in/books/about/Theory_of_Neural_analog_Reinforcement_Sy.html?id=qSwZAQAAIAAJ&redir_esc=y
23.
Silver
,
D.
,
Schrittwieser
,
J.
,
Simonyan
,
K.
,
Antonoglou
,
I.
,
Huang
,
A.
,
Guez
,
A.
,
Hubert
,
T.
,
Baker
,
L.
,
Lai
,
M.
,
Bolton
,
A.
,
Chen
,
Y.
,
Lillicrap
,
T.
,
Hui
,
F.
,
Sifre
,
L.
,
van den Driessche
,
G.
,
Graepel
,
T.
, and
Hassabis
,
D.
,
2017
, “
Mastering the Game of Go Without Human Knowledge
,”
Nature
,
550
(
7676
), pp.
354
359
.10.1038/nature24270
24.
Lillicrap
,
T. P.
,
Hunt
,
J. J.
,
Pritzel
,
A.
,
Heess
,
N.
,
Erez
,
T.
,
Tassa
,
Y.
, and
Wierstra
,
D.
,
2015
, “
Continuous Control With Deep Reinforcement Learning
,”
Comput. Sci.
,
8
(
6
), p.
A187
.https://arxiv.org/abs/1509.02971
25.
Schaefer
,
A. M.
,
Schneegass
,
D.
,
Sterzing
,
V.
, and
Udluft
,
S.
,
2007
, A Neural Reinforcement Learning Approach to Gas Turbine Control,
International Joint Conference on Neural Networks
, Orlando, FL, Aug. 12–17, pp.
1691
1696
. 10.1109/IJCNN.2007.4371212
26.
Sedighizadeh
,
M.
, and
Rezazadeh
,
A.
,
2008
, “
Adaptive PID Controller Based on Reinforcement Learning for Wind Turbine Control
,”
Proc. World Acad. Sci., Eng. Technol.
,
27
, pp.
257
262
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.6563&rep=rep1&type=pdf
27.
Sergiy
,
V. Y.
,
Roman
,
L. Z.
, and
Igor
,
L.
,
2015
, “
Modeling the Gas Turbine Engine Under Its Dynamic Heating Conditions
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
031506
. 10.1115/1.4028449
28.
Zhou
,
D. J.
,
Wei
,
T.
,
Zhang
,
H. S.
,
Ma
,
S. X.
, and
Weng
,
S. L.
,
2017
, “
A Damage Evaluation Model of Turbine Blade for Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
139
(
9
), p.
092602
.10.1115/1.4036060
30.
Sutton
,
R. S.
, and
Barto
,
A. G.
,
1998
,
Introduction to Reinforcement Learning
,
MIT Press
,
Cambridge, UK
, p.
135
.
31.
Konda
,
V. R.
, and
Tsitsiklis
,
J. N.
,
2000
, “
Actor-Critic Algorithms
,”
Adv. Neural Inf. Process. Syst.
,, pp.
1008
1014
. https://papers.nips.cc/paper/1786-actor-critic-algorithms.pdf
32.
Tang
,
H.
,
Houthooft
,
R.
,
Foote
,
D.
,
Stooke
,
A.
,
Chen
,
X.
, and
Duan
,
Y.
,
2017
, “
A Study of Count-Based Exploration for Deep Reinforcement Learning
,”
31st Conference on Neural Information Processing Systems
, Long Beach, CA, Dec. 4–9, pp.
1
10
.http://papers.neurips.cc/paper/6868-exploration-a-study-of-count-based-exploration-for-deep-reinforcement-learning.pdf
33.
Ogata
,
K.
, and
Yang
,
Y.
,
2010
,
Modern Control Engineering
,
Prentice Hall
,
Upper Saddle River, NJ
, p.
5
.
34.
Zhao
,
Z. Y.
, and
Tomizuka
,
M.
,
1993
, “
Fuzzy Gain Scheduling of PID Controllers
,”
IEEE Trans. Syst., Man, Cybern.
,
23
(
5
), pp.
1392
1398
.10.1109/21.260670
35.
Sutton
,
R. S.
,
McAllester
,
D. A.
,
Singh
,
S. P.
, and
Mansour
,
Y.
,
2000
, “
Policy Gradient Methods for Reinforcement Learning With Function Approximation
,”
Advances in Neural Information Processing Systems
(
NIPS
), MIT Press, Denver, CO, pp.
1057
1063
.: http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf
36.
Peng
,
B. X.
,
Berseth
,
G.
, and
Michiel
,
V. D. P.
,
2016
, “
Terrain-Adaptive Locomotion Skills Reinforcement Learning
,”
ACM Trans. Graph.
,
35
(
4
), pp.
1
12
.10.1145/2897824.2925881
You do not currently have access to this content.