Abstract

This study outlines a model calibration approach for an accelerated creep test called the dynamic negative stepped test (DNST) to enable the rapid screening of creep-resistant materials. In DNST, stress is stepped decreased based on the attainment of a sufficient minimum-creep-strain-rate (MCSR) at each stress level. Steps are repeated, torturing the material, until rupture occurs. The DNST is advantageous as a screening test for new alloys. Alloys and heats with superior creep resistance will be able to survive longer and with greater ductility than those with poor creep resistance. The calibration of a constitutive model to DNST data furnishes predictions of the conventional creep response being between 65 h and 6685 h from the relatively short (<130 h) DNST Data. In this study, DNSTs are performed on electron beam melted (EBM) Ti-6Al-4V at 650 °C with stepping through 150, 75, 60, and 50 MPa. Six build orientations are tested including 0 deg, 30 deg, 45 deg, 60 deg, 90 deg, and V (vertical) direction. The Wilshire–Cano–Stewart (WCS) model is employed to calibrate the experimental data. A systematic calibration approach is adopted. Each step is calibrated numerically. A unique set of minimum-creep-strain-rate (MCSR) and stress-rupture (SR) related material constants, i.e., the Wilshire and Sinh constants are obtained for each build direction. A nonhomogenous objective function is used to numerically optimize the strain trajectory and damage trajectory constants. To find the best-fit curve, the strain trajectory constants, and damage trajectory constants are numerically refined for each step. The WCS model shows a near-perfect prediction of the DNST data. Based on the calibrated constants, conventional creep curves are generated in order to determine which build orientations are likely to exhibit poor, moderate, and superior creep resistance. Predictions of MCSR and SR curves over a wide stress range are estimated outside the experimental range to investigate the extrapolation pedigree of the approach. This will allow the material designers to have more confidence in DNST-generated test data for predicting long-term creep response and structural lifetime.

References

1.
Melia
,
M. A.
,
Duran
,
J. G.
,
Koepke
,
J. R.
,
Saiz
,
D. J.
,
Jared
,
B. H.
, and
Schindelholz
,
E. J.
,
2020
, “
How Build Angle and Post-Processing Impact Roughness and Corrosion of Additively Manufactured 316 L Stainless Steel
,”
NPJ Mater. Degrad.
,
4
(
1
), p.
21
.10.1038/s41529-020-00126-5
2.
Meli
,
E.
,
Rindi
,
A.
,
Ridolfi
,
A.
,
Furferi
,
R.
,
Buonamici
,
F.
,
Iurisci
,
G.
,
Corbò
,
S.
, and
Cangioli
,
F.
,
2019
, “
Design and Production of Innovative Turbomachinery Components Via Topology Optimization and Additive Manufacturing
,”
Int. J. Rotating Mach.
,
2019
, pp.
1
12
.10.1155/2019/9546831
3.
Rosen
,
D. W.
,
2014
, “
Research Supporting Principles for Design for Additive Manufacturing
,”
Virtual Phys. Prototyp.
,
9
(
4
), pp.
225
232
.10.1080/17452759.2014.951530
4.
Seifi
,
M.
,
Gorelik
,
M.
,
Waller
,
J.
,
Hrabe
,
N.
,
Shamsaei
,
N.
,
Daniewicz
,
S.
, and
Lewandowski
,
J. J.
,
2017
, “
Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification
,”
JOM
,
69
(
3
), pp.
439
455
.10.1007/s11837-017-2265-2
5.
Seifi
,
M.
,
Salem
,
A.
,
Beuth
,
J.
,
Harrysson
,
O.
, and
Lewandowski
,
J. J.
,
2016
, “
Overview of Materials Qualification Needs for Metal Additive Manufacturing
,”
JOM
,
68
(
3
), pp.
747
764
.10.1007/s11837-015-1810-0
6.
Viswanathan
,
R.
, and
Foulds
,
J.
,
1998
, “
Accelerated Stress Rupture Testing for Creep Life Prediction—Its Value and Limitations
,”
ASME J. Pressure Vessel Technol.
,
120
(
2
), pp.
105
115
.10.1115/1.2842227
7.
Jazouli
,
S.
,
Luo
,
W.
,
Bremand
,
F.
, and
Vu-Khanh
,
T.
,
2005
, “
Application of Time–Stress Equivalence to Nonlinear Creep of Polycarbonate
,”
Polym. Test.
,
24
(
4
), pp.
463
467
.10.1016/j.polymertesting.2005.01.002
8.
Luo
,
W. B.
,
Wang
,
C. H.
, and
Zhao
,
R. G.
,
2007
, “
Application of Time-Temperature-Stress Superposition Principle to Nonlinear Creep of Poly(Methyl Methacrylate)
,”
KEM
,
340-341
, pp.
1091
1096
.10.4028/www.scientific.net/KEM.340-341.1091
9.
Williams
,
M. L.
,
Landel
,
R. F.
, and
Ferry
,
J. D.
,
1955
, “
The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids
,”
J. Am. Chem. Soc.
,
77
(
14
), pp.
3701
3707
.10.1021/ja01619a008
10.
Stewart
,
C. M.
,
Hossain
,
M. A.
,
Pellicotte
,
J. T.
,
Mach
,
R.
,
Alexander
,
D.
, and
Siddiqui
,
S. F.
,
2022
, “
Accelerated Creep Testing of Inconel 718 Using the Stepped Isostress Method (SSM)
,”
Mater. Perform. Charact.
,
11
(
2
), p.
20200174
.10.1520/MPC20200174
11.
Badea
,
L.
,
Surand
,
M.
,
Ruau
,
J.
, and
Viguier
,
B.
,
2014
, “
Creep Behavior of Ti-6Al-4V From 450 C to 600 C
,”
Univ. Polytech. Bucharest Sci. Bull. Ser. B
,
76
(
1
), pp.
185
196
.http://www.scientificbulletin.upb.ro/rev_docs_arhiva/fulldcc_529789.pdf
12.
Aliprandi
,
P.
,
Giudice
,
F.
,
Guglielmino
,
E.
,
La Rosa
,
G.
, and
Sili
,
A.
,
2019
, “
Creep Behavior of Ti-6Al-4V Alloy Specimens Produced by Electron Beam Melting
,”
Metall. Ital.
,
6
, pp.
18
23
.http://aimnet.it/la_metallurgia_italiana/2019/giugno/Aliprandi.pdf
13.
Aliprandi
,
P.
,
Giudice
,
F.
,
Guglielmino
,
E.
, and
Sili
,
A.
,
2019
, “
Tensile and Creep Properties Improvement of Ti-6Al-4V Alloy Specimens Produced by Electron Beam Powder Bed Fusion Additive Manufacturing
,”
Metals (Basel)
,
9
(
11
), p.
1207
.10.3390/met9111207
14.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.10.1007/s11665-014-0958-z
15.
Todai
,
M.
,
Nakano
,
T.
,
Liu
,
T.
,
Yasuda
,
H. Y.
,
Hagihara
,
K.
,
Cho
,
K.
,
Ueda
,
M.
, and
Takeyama
,
M.
,
2017
, “
Effect of Building Direction on the Microstructure and Tensile Properties of Ti-48Al-2Cr-2Nb Alloy Additively Manufactured by Electron Beam Melting
,”
Addit. Manuf.
,
13
, pp.
61
70
.10.1016/j.addma.2016.11.001
16.
Galarraga
,
H.
,
Warren
,
R. J.
,
Lados
,
D. A.
,
Dehoff
,
R. R.
,
Kirka
,
M. M.
, and
Nandwana
,
P.
,
2017
, “
Effects of Heat Treatments on Microstructure and Properties of Ti-6Al-4V ELI Alloy Fabricated by Electron Beam Melting (EBM)
,”
Mater. Sci. Eng. A
,
685
, pp.
417
428
.10.1016/j.msea.2017.01.019
17.
Agapovichev
,
A.
,
Sotov
,
A.
,
Kokareva
,
V.
, and
Smelov
,
V.
,
2018
, “
Possibilities and Limitations of Titanium Alloy Additive Manufacturing
,”
MATEC Web Conferences, EDP Science
, Sevastopol, Russian Federation, Sept. 10–14, Vol.
224
, p.
01064
.10.1051/matecconf/201822401064
18.
Kirchner
,
A.
,
Klöden
,
B.
,
Luft
,
J.
,
Wei
,
T.
, and
Kieback
,
B.
,
2015
, “
Process Window for Electron Beam Melting of Ti-6Al-4V
,”
Powder Metall.
,
58
(
4
), pp.
246
249
.10.1179/0032589915Z.000000000244
19.
Draper, S., Lerch, B., Rogers, R., Martin, R., Locci, I., and Garg, A., 2016, “Materials Characterization of Electron Beam Melted Ti-6Al-4V,”
Proceedings of the 13th World Conference on Titanium
, V. Venkatesh, A. L. Pilchak, J. E. Allison, S. Ankem, R. Boyer, J. Christodoulou, H. L. Fraser, M. A. Imam, Y. Kosaka, H. J. Rack, A. Chatterjee, and A. Woodfield, eds., San Diego, CA, Aug. 16–20.10.1002/9781119296126.ch242
20.
Benzing
,
J.
,
Hrabe
,
N.
,
Quinn
,
T.
,
White
,
R.
,
Rentz
,
R.
, and
Ahlfors
,
M.
,
2019
, “
Hot Isostatic Pressing (HIP) to Achieve Isotropic Microstructure and Retain as-Built Strength in an Additive Manufacturing Titanium Alloy (Ti-6Al-4V)
,”
Mater. Lett.
,
257
, p.
126690
.10.1016/j.matlet.2019.126690
21.
Brooks
,
A. J.
,
Yao
,
H.
,
Yuan
,
J.
,
Kio
,
O.
,
Lowery
,
C. G.
,
Markötter
,
H.
,
Kardjilov
,
N.
,
Guo
,
S.
, and
Butler
,
L. G.
,
2018
, “
Early Detection of Fracture Failure in SLM AM Tension Testing With Talbot-Lau Neutron Interferometry
,”
Addit. Manuf.
,
22
, pp.
658
664
.10.1016/j.addma.2018.06.012
22.
Muraca
,
R.
, and
Whittick
,
J.
,
1972
, “
Materials Data Handbook. Titanium 6Al-4V
,” Western Applied Research & Development Inc., San Carlos, CA.
23.
Cano
,
J. A.
, and
Stewart
,
C. M.
,
2019
, “
Application of the Wilshire Stress-Rupture and Minimum-Creep-Strain-Rate Prediction Models for Alloys P91 in Tube, Plate, and Pipe Form
,”
ASME
Paper No. GT2019-90625. 10.1115/GT2019-90625
24.
Cano
,
J. A.
, and
Stewart
,
C. M.
,
2021
, “
A Continuum Damage Mechanics (CDM) Based Wilshire Model for Creep Deformation, Damage, and Rupture Prediction
,”
Mater. Sci. Eng. A
,
799
, p.
140231
.10.1016/j.msea.2020.140231
25.
Hossain
,
M. A.
,
Cano
,
J. A.
, and
Stewart
,
C. M.
,
2023
, “
Probabilistic Creep With the Wilshire–Cano–Stewart Model
,”
Fatigue & Fracture of Engineering Materials & Structure
, John Wiley & Sons Ltd., Hoboken, NJ.10.1111/ffe.14120
26.
Cano
,
J. A.
, and
Stewart
,
C. M.
,
2022
, “
Accelerated Creep Test Qualification of Creep-Resistance Using the Wilshire–Cano–Stewart Constitutive Model and Stepped Isostress Method
,”
ASME J. Eng. Gas Turbines Power
,
144
(
1
), p.
011016
.10.1115/1.4052205
27.
Hossain
,
M. A.
,
Cano
,
J. A.
, and
Stewart
,
C. M.
,
2020
, “
Probabilistic Creep Modeling of 304 Stainless Steel Using a Modified Wilshire Creep-Damage Model
,”
ASME
Paper No. PVP2020-21613. 10.1115/PVP2020-21613
28.
Alabort
,
E.
,
Putman
,
D.
, and
Reed
,
R. C.
,
2015
, “
Superplasticity in Ti–6Al–4V: Characterisation, Modelling and Applications
,”
Acta Mater.
,
95
, pp.
428
442
.10.1016/j.actamat.2015.04.056
29.
Alabort
,
E.
,
Kontis
,
P.
,
Barba
,
D.
,
Dragnevski
,
K.
, and
Reed
,
R. C.
,
2016
, “
On the Mechanisms of Superplasticity in Ti–6Al–4V
,”
Acta Mater.
,
105
, pp.
449
463
.10.1016/j.actamat.2015.12.003
You do not currently have access to this content.