Abstract

In this work, we investigate qualitative backlight imaging-based spray characteristics and laser-induced incandescence (LII) based quantitative soot volume fraction (SVF) in a CFM56 model combustor with a simplex nozzle at 1 bar, 303 K. The soot volume fraction is quantitatively measured using an in situ extinction-based calibration technique. Soot was detected immediately downstream of the swirler exit and in the shear layer region as observed by other authors. In addition, soot was also detected inside the inner recirculation region which could be due to the spray distribution, geometry, or difference in flame anchoring. The number-averaged soot volume fraction is of the order of 20 ppb which is comparable in magnitude to previously reported combustor measurements. Large eddy simulation (LES) modeling of the experimental setup coupled with the simple two-equation Tesner model has been done using ansysfluent® to study soot formation. The model shows good qualitative agreement with the experimental results although quantitatively it is lower by one order of magnitude. Soot formation occurs in the rich region immediately downstream of the swirler while the second half of the primary zone becomes lean and soot oxidation is more dominant.

References

1.
United States, Committee on Aviation Environmental Protection
,
2010
, “
CAEP/8 NOx Stringency Cost-Benefit Analysis Demonstration Using APMT-Impact
,” CAEP/8-IP/30.http://web.mit.edu/aeroastro/partner/reports/caep8/caep8-nox-using-apmt.pdf
2.
International Civil Aviation Organization
,
2017
, “
CO2 Certification Requirement
,” Annex 16, Vol. 3, International Standards and Recommended Practices.https://www.icao.int/newsroom/pages/icao-counciladopts-new-co2-emissions-standard-for-aircraft.aspx
3.
SAE Aerospace
,
1997
, “
Aircraft Gas Turbine Engine Exhaust Smoke Measurement
,” ARP1179D.https://www.sae.org/standards/content/arp1179d/
4.
Champagne
,
D. L.
,
1971
, “
Standard Measurement of Aircraft Gas Turbine Engine Exhaust Smoke
,”
ASME
Paper No. GT-71-88.10.1115/GT-71-88
5.
Toipadi
,
A. K.
,
Danis
,
A. M.
,
Mongia
,
H. C.
, and
Lindstedt
,
R. P.
,
1997
, “
Soot Modelling in Gas Turbine Combustors
,”
ASME
Paper No. 97-GT-149.10.1115/97-GT-149
6.
Ballal
,
D. R.
, and
Zelina
,
J.
,
2003
, “
Progress in Aeroengine Technology (1939–2003)
,”
J. Aircr.
,
41
(
1
).10.2514/1.562
7.
U.S. Environmental Protection Agency
,
2011
, “
The Benefits and Costs of the Clean Air Act From 1990 to 2020
,” Report.https://www.epa.gov/sites/default/files/2015-07/documents/mainbody51203.pdf
8.
Joint, W.H.O. and World Health Organization
,
2006
, “
Health Risks of Particulate Matter From Long-Range Transboundary Air Pollution
,” No. EUR/05/5046028.
WHO Regional Office for Europe
,
Copenhagen, Denmark
.https://www.euro.who.int/__data/assets/pdf_file/0006/78657/E88189.pdf
9.
Dellinger
,
B.
,
Pryor
,
W. A.
,
Cueto
,
R.
,
Squadrito
,
G. L.
,
Hegde
,
V.
, and
Deutsch
,
W. A.
,
2001
, “
Role of Free Radicals in the Toxicity of Airborne Fine Particulate Matter
,”
Chem. Res. Toxicol.
,
14
(
10
), pp.
1371
1377
.10.1021/tx010050x
10.
Heinrich
,
U.
,
Fuhst
,
R.
,
Rittinghausen
,
S.
,
Creutzenberg
,
O.
,
Bellmann
,
B.
,
Koch
,
W.
, and
Levsen
,
K.
,
1995
, “
Chronic Inhalation Exposure of Wistar Rats and Two Different Strains of Mice to Diesel Engine Exhaust, Carbon Black, and Titanium Dioxide
,”
Inhalation Toxicol.
,
7
(
4
), pp.
533
556
.10.3109/08958379509015211
11.
Jensen
,
E. J.
, and
Toon
,
O. B.
,
1997
, “
The Potential Impact of Soot Particles From Aircraft Exhaust on Cirrus Clouds
,”
Geophys. Res. Lett.
,
24
(
3
), pp.
249
252
.10.1029/96GL03235
12.
Michelsen
,
H. A.
,
Schulz
,
C.
,
Smallwood
,
G. J.
, and
Will
,
S.
,
2015
, “
Laser-Induced Incandescence: Particulate Diagnostics for Combustion, Atmospheric, and Industrial Applications
,”
Prog. Energy Combust. Sci.
,
51
, pp.
2
48
.10.1016/j.pecs.2015.07.001
13.
Santoro
,
R. J.
, and
Shaddix
,
C. R.
,
2002
, “
Laser-Induced Incandescence
,”
Applied Combustion Diagnostics
,
Taylor & Francis
,
New York
, pp.
252
286
.
14.
Schulz
,
C.
,
Kock
,
B. F.
,
Hofmann
,
M.
,
Michelsen
,
H.
,
Will
,
S.
,
Bougie
,
B.
,
Suntz
,
R.
, et al.,
2006
, “
Laser-Induced Incandescence: Recent Trends and Current Questions
,”
Appl. Phys. B
,
83
(
3
), pp.
333
354
.10.1007/s00340-006-2260-8
15.
Li
,
S.
,
Ren
,
Y.
,
Biswas
,
P.
, and
Stephen
,
D. T.
,
2016
, “
Flame Aerosol Synthesis of Nanostructured Materials and Functional Devices: Processing, Modeling, and Diagnostics
,”
Prog. Energy Combust. Sci.
,
55
, pp.
1
59
.10.1016/j.pecs.2016.04.002
16.
Santoro
,
R. J.
,
Semerjian
,
H. G.
, and
Dobbins
,
R. A.
,
1983
, “
Soot Particle Measurements in Diffusion Flames
,”
Combust. Flame
,
51
, pp.
203
218
.10.1016/0010-2180(83)90099-8
17.
Smooke
,
M. D.
,
Xu
,
Y.
,
Zurn
,
R. M.
,
Lin
,
P.
,
Frank
,
J. H.
, and
Long
,
M. B.
,
1992
, “
Computational and Experimental Study of OH and CH Radicals in Axisymmetric Laminar Diffusion Flames
,”
Symp. (Int.) Combust.
,
24
(
1
), pp.
813
821
.10.1016/S0082-0784(06)80099-8
18.
Niemann
,
U.
,
Seshadri
,
K.
, and
Williams
,
F. A.
,
2014
, “
Methane, Ethane, and Ethylene Laminar Counterflow Diffusion Flames at Elevated Pressures: Experimental and Computational Investigations Up to 2.0 MPa
,”
Combust. Flame
,
161
(
1
), pp.
138
146
.10.1016/j.combustflame.2013.07.019
19.
de Oliveira
,
M. A.
,
Luijten
,
C. C. M.
, and
de Goey
,
L. P. H.
,
2009
, “
Soot Measurements in Laminar Flames of Gaseous and (Prevaporized) Liquid Fuels
,” 4th European Combustion Meeting (
ECM 2009
),
Vienna, Austria
, Apr. 14–17, pp.
1
6
.https://www.researchgate.net/publication/239843985_Soot_measurements_in_laminar_flames_of_gaseous_and_prevaporized_liquid_fuels
20.
Kent
,
J. H.
, and
Honnery
,
D. R.
,
1990
, “
A Soot Formation Rate Map for a Laminar Ethylene Diffusion Flame
,”
Combust. Flame
,
79
(
3–4
), pp.
287
298
.10.1016/0010-2180(90)90140-M
21.
Mahmoud
,
S. M.
,
Nathan
,
G. J.
,
Alwahabi
,
Z. T.
,
Sun
,
Z. W.
,
Medwell
,
P. R.
, and
Dally
,
B. B.
,
2017
, “
The Effect of Exit Strain Rate on Soot Volume Fraction in Turbulent Non-Premixed Jet Flames
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
889
897
.10.1016/j.proci.2016.08.055
22.
Mahmoud
,
S. M.
,
Nathan
,
G. J.
,
Alwahabi
,
Z. T.
,
Sun
,
Z. W.
,
Medwell
,
P. R.
, and
Dally
,
B. B.
,
2018
, “
The Effect of Exit Reynolds Number on Soot Volume Fraction in Turbulent Non-Premixed Jet Flames
,”
Combust. Flame
,
187
, pp.
42
51
.10.1016/j.combustflame.2017.08.020
23.
University of Adelaide, 2020, International Sooting Flame Workshop, University of Adelaide, Adelaide, Australia, accessed July 2020, https://www.adelaide.edu.au/cet/isfworkshop/data-sets
24.
Young
,
K. J.
,
Stewart
,
C. D.
, and
Moss
,
J. B.
,
1994
, “
Soot Formation in Turbulent Non-Premixed Kerosene-Air Flames Burning at Elevated Pressure: Experimental Measurement
,”
Symp. (Int.) Combust.
,
25
(
1
), pp.
609
617
.10.1016/S0082-0784(06)80692-2
25.
Zhang
,
J.
,
Shaddix
,
C. R.
, and
Schefer
,
R. W.
,
2011
, “
Design of “Model-Friendly” Turbulent Non-Premixed Jet Burners for C2+ Hydrocarbon Fuels
,”
Rev. Sci. Instrum.
,
82
(
7
), p.
074101
.10.1063/1.3605491
26.
Geigle
,
K. P.
,
Köhler
,
M.
,
O'Loughlin
,
W.
, and
Meier
,
W.
,
2015
, “
Investigation of Soot Formation in Pressurized Swirl Flames by Laser Measurements of Temperature, Flame Structures, and Soot Concentrations
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3373
3380
.10.1016/j.proci.2014.05.135
27.
Geigle
,
K. P.
,
Zerbs
,
J.
,
Hadef
,
R.
, and
Guin
,
C.
,
2019
, “
Laser-Induced Incandescence for Soot Measurements in an Aero-Engine Combustor at Pressures Up to 20 Bar
,”
Appl. Phys. B
,
125
(
6
), pp.
1
8
.10.1007/s00340-019-7211-2
28.
Zerbs
,
J.
,
Geigle
,
K. P.
,
Lammel
,
O.
,
Hader
,
J.
,
Stirn
,
R.
,
Hadef
,
R.
, and
Meier
,
W.
,
2009
, “
The Influence of Wavelength in Extinction Measurements and Beam Steering in Laser-Induced Incandescence Measurements in Sooting Flames
,”
Appl. Phys. B
,
96
(
4
), pp.
683
694
.10.1007/s00340-009-3550-8
29.
Vander Wal
,
R. L.
, and
Dietrich
,
D. L.
,
1995
, “
Laser-Induced Incandescence Applied to Droplet Combustion
,”
Appl. Opt.
,
34
(
6
), pp.
1103
1107
.10.1364/AO.34.001103
30.
Wang
,
L. Y.
,
Bauer
,
C. K.
, and
Gülder
,
Ö. L.
,
2019
, “
Soot and Flow Field in Turbulent Swirl-Stabilized Spray Flames of Jet A-1 in a Model Combustor
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5437
5444
.10.1016/j.proci.2018.05.093
31.
Meier
,
U.
,
Heinze
,
J.
,
Magens
,
E.
,
Schroll
,
M.
,
Hassa
,
C.
,
Bake
,
S.
, and
Doerr
,
T.
,
2015
, “
Optically Accessible Multisector Combustor: Application and Challenges of Laser Techniques at Realistic Operating Conditions
,”
ASME
Paper No. GT2015-43391.10.1115/GT2015-43391
32.
Tesner
,
P. A.
,
Smegiriova
,
T. D.
, and
Knorre
,
V. G.
,
1971
, “
Kinetics of Dispersed Carbon Formation
,”
Combust. Flame
,
17
(
2
), pp.
253
260
.10.1016/S0010-2180(71)80168-2
33.
Magnussen
,
B. F.
, and
Hjertager
,
B. H.
,
1977
, “
On Mathematical Modeling of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion
,”
Symp. (Int.) Combust.
,
16
(
1
), pp.
719
729
.10.1016/S0082-0784(77)80366-4
34.
Sarlak
,
R.
,
Shams
,
M.
, and
Ebrahimi
,
R.
,
2012
, “
Numerical Simulation of Soot Formation in a Turbulent Diffusion Flame: Comparison Among Three Soot Formation Models
,”
Proc. Inst. Mech. Eng., Part C
,
226
(
5
), pp.
1290
1301
.10.1177/0954406211421997
35.
Chouaieb
,
S.
,
Kriaa
,
W.
,
Mhiri
,
H.
, and
Bournot
,
P.
,
2017
, “
A Parametric Study of Microjet Assisted Methane/Air Turbulent Flames
,”
Energy Convers. Manage.
,
140
, pp.
121
132
.10.1016/j.enconman.2017.02.079
36.
Zellat
,
M.
,
Rolland
,
T.
, and
Poplow
,
F.
,
1990
, “
Three-Dimensional Modeling of Combustion and Soot Formation in an Indirect Injection Diesel Engine
,”
J. Engines
,
99
(
3
), pp.
597
617
.https://www.jstor.org/stable/44548527
37.
Mongia
,
H.
,
Al-Roub
,
M.
,
Danis
,
A.
,
Elliott-Lewis
,
D.
,
Johnson
,
A.
,
Vise
,
S.
,
Jeng
,
S. M.
, et al.,
2001
, “
Swirl cup Modeling. I
,”
37th Joint Propulsion Conference and Exhibit
, Salt Lake City, UT, July 8–11, p.
3576
.10.2514/6.2001-3576
38.
Shanmugadas, K. P., Chakravarthy, S. R., Chiranthan, R. N., Sekar, J., and Krishnaswami, S., 2018, “Characterization of Wall Filming and Atomization Inside a Gas-Turbine Swirl Injector,”
Exp. Fluids
, 59, p. 151.10.1007/s00348-018-2606-0
39.
Cléon
,
G.
,
Amodeo
,
T.
,
Faccinetto
,
A.
, and
Desgroux
,
P.
,
2011
, “
Laser Induced Incandescence Determination of the Ratio of the Soot Absorption Functions at 532 nm and 1064 nm in the Nucleation Zone of a Low Pressure Premixed Sooting Flame
,”
Appl. Phys. B
,
104
(
2
), pp.
297
305
.10.1007/s00340-011-4372-z
40.
Bengtsson
,
P. E.
, and
Aldén
,
M.
,
1995
, “
Soot-Visualization Strategies Using Laser Techniques
,”
Appl. Phys. B
,
60
(
1
), pp.
51
59
.10.1007/BF01082073
41.
Smallwood
,
G. J.
,
2008
, “
A Critique of Laser-Induced Incandescence for the Measurement of Soot
,”
Ph.D. dissertation
,
Cranefield University
,
Cranefield, UK
.https://www.researchgate.net/publication/236884581_A_critique_of_laserinduced_incandescence_for_the_measurement_of_soot
42.
Mercier
,
X.
,
Faccinetto
,
A.
, and
Desgroux
,
P.
,
2013
, “
Laser Diagnostics for Selective and Quantitative Measurement of PAHs and Soot
,”
Cleaner Combustion
,
Springer
,
London
, UK, pp.
303
331
.
43.
Michelsen
,
H. A.
,
Schrader
,
P. E.
, and
Goulay
,
F.
,
2010
, “
Wavelength and Temperature Dependences of the Absorption and Scattering Cross Sections of Soot
,”
Carbon
,
48
(
8
), pp.
2175
2191
.10.1016/j.carbon.2010.02.014
44.
Smyth
,
K. C.
, and
Shaddix
,
C. R.
,
1996
, “
The Elusive History of m∼= 1.57–0.56i for the Refractive Index of Soot
,”
Combust. Flame
,
107
(
3
), pp.
314
320
.10.1016/S0010-2180(96)00170-8
45.
Wen
,
Z.
,
Yun
,
S.
,
Thomson
,
M. J.
, and
Lightstone
,
M. F.
,
2003
, “
Modeling Soot Formation in Turbulent Kerosene/Air Jet Diffusion Flames
,”
Combust. Flame
,
135
, pp.
323
340
.10.1016/S0010-2180(03)00179-2
46.
Nakod
,
P.
,
Patwardhan
,
S.
,
Verma
,
I.
, and
Orsino
,
S.
,
2017
, “
Prediction of Soot Formation Trends in Turbulent Kerosene-Air Diffusion Jet Flames With Elevated Operating Pressure
,”
ASME
Paper No. GTINDIA2017-4736.10.1115/GTINDIA2017-4736
47.
Hsiao
,
G.
, and
Mongia
,
H.
,
2003
, “
Swirl Cup Modeling Part 3: Grid Independent Solution With Different Turbulence Models
,”
41st Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 6–9, p.
1349
.10.2514/6.2003-1349
48.
Giridharan
,
M.
,
Mongia
,
H.
, and
Jeng
,
S. M.
,
2003
, “
Swirl Cup Modeling-Part VIII: Spray Combustion in CFM-56 Single-Cup Flame Tube
,”
41st Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 6–9, p.
319
.10.2514/6.2003-319
49.
Menter
,
F.
,
2018
, “
Stress-Blended Eddy Simulation (SBES)—a New Paradigm in Hybrid RANS-LES Modeling
,”
Symposium on Hybrid RANS-LES Methods
,
Springer
,
Cham
, Strasbourg, France, Sept. 26–28, pp.
27
37
.10.1007/978-3-319-70031-1_3
50.
Wang
,
S.
,
Yang
,
V.
,
Hsiao
,
G.
,
Hsieh
,
S. Y.
, and
Mongia
,
H. C.
,
2007
, “
Large-Eddy Simulations of Gas-Turbine Swirl Injector Flow Dynamics
,”
J. Fluid Mech.
,
583
, pp.
99
122
.10.1017/S0022112007006155
51.
Kim
,
J. C.
,
Yoo
,
K. H.
, and
Sung
,
H. G.
,
2011
, “
Large-Eddy Simulation and Acoustic Analysis of a Turbulent Flow Field in a Swirl-Stabilized Combustor
,”
J. Mech. Sci. Technol.
,
25
(
10
), pp.
2703
2710
.10.1007/s12206-011-0741-0
52.
Stevens
,
E.
,
Held
,
T.
, and
Mongia
,
H.
,
2003
, “
Swirl Cup Modeling Part VII: Partially-Premixed Laminar Flamelet Model Validation and Simulation of a Single-Cup Combustor With Gaseous n-Heptane
,”
41st Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan 6–9, p.
488
.10.2514/6.2003-488
53.
Jeng
,
S. M.
,
Flohre
,
N.
, and
Mongia
,
H.
,
2004
, “
Swirl Cup Modeling-Part IX: Liquid Atomization Modeling
,”
42nd AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 5–8, p.
137
.10.2514/6.2004-137
54.
Held
,
T.
, and
Mongia
,
H.
,
1998
, “
Emissions Modeling of Gas Turbine Combustors Using a Partially-Premixed Laminar Flamelet Model
,”
34th AIAA Joint Propulsion Conference and Exhibit
, Cleveland, OH, July 13–15, p.
3950
.10.2514/6.1998-3950
55.
Held
,
T. J.
, and
Mongia
,
H. C.
,
1998
, “
Application of a Partially Premixed Laminar Flamelet Model to a Low Emissions Gas Turbine Combustor
,”
ASME
Paper No. 98-GT-217.10.1115/98-GT-217
56.
Sripathi
,
M.
,
Krishnaswami
,
S.
,
Danis
,
A. M.
, and
Hsieh
,
S. Y.
,
2014
, “
Laminar Flamelet Based NOx Predictions for Gas Turbine Combustors
,”
ASME
Paper No. GT2014-27258.10.1115/GT2014-27258
57.
Giridharan
,
M. G.
,
Held
,
T. J.
, and
Mongia
,
H. C.
,
2003
, “
A Wet Emissions CFD Model Based on Laminar Flamelet Approach
,”
International Society for Air Breathing Engines
, Cleveland, OH, Aug. 31–Sept. 5.
58.
Liu
,
F.
,
Snelling
,
D. R.
,
Thomson
,
K. A.
, and
Smallwood
,
G. J.
,
2009
, “
Sensitivity and Relative Error Analyses of Soot Temperature and Volume Fraction Determined by Two-Color LII
,”
Appl. Phys. B
,
96
(
4
), pp.
623
636
.10.1007/s00340-009-3560-6
59.
Escudero
,
F.
,
Fuentes
,
A.
,
Consalvi
,
J. L.
,
Liu
,
F.
, and
Demarco
,
R.
,
2016
, “
Unified Behavior of Soot Production and Radiative Heat Transfer in Ethylene, Propane and Butane Axisymmetric Laminar Diffusion Flames at Different Oxygen Indices
,”
Fuel
,
183
, pp.
668
679
.10.1016/j.fuel.2016.06.126
60.
Cai
,
J.
,
Fu
,
Y.
,
Elkady
,
A.
,
Mongia
,
H.
, and
Jeng
,
S.
,
2003
, “
Effect of Confinement Size on Swirler Cup Aerodynamics
,”
41st Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 6–9, p.
486
.10.2514/6.2003-486
61.
Frenklach
,
M.
, and
Wang
,
H.
,
1991
, “
Detailed Modeling of Soot Nucleation And Growth
,”
Twenty-Third Symp. (Int.) Combust.
,
23
(
1
), pp.
1559
1566
.10.1016/S0082-0784(06)80426-1
62.
Markstein
,
G. H.
, and
De Ris
,
J.
,
1985
, “
Radiant Emission and Absorption by Laminar Ethylene and Propylene Diffusion Flames
,”
Symp. (Int.) Combust.
,
20
(
1
), pp.
1637
1646
.10.1016/S0082-0784(85)80659-7
You do not currently have access to this content.