Abstract

Thermal loads induced by internal fluid friction significantly influence the operating behavior of high-speed journal bearings. These loads increase on average if critical Reynolds numbers are exceeded. This paper presents a detailed thermo-elasto-hydrodynamic (TEHD) analysis of a large five-pad tilting-pad journal bearing operating up to surface speeds of 94 m/s. The structure mechanical analysis is conducted by a FE-Code that is implemented as a submodule of the bearing code to improve computational efficiency. The nonlinear structure model includes the pads, their aligning ring, and the housing while the journal's thermal expansion is approximated analytically. The contact of pads and ring is modeled with a contact algorithm. Validation with test data from literature indicates the relevance of structure model's complexity. Besides the pad deflection, in particular, the consideration of the ring and housing thermal expansion is decisive in predicting the effective clearance properly. Furthermore, comparisons between measurement and simulation show that the experimentally identified nonlinear speed-dependent characteristic of minimum film thickness that features an increase due to turbulent flow is well predicted by the theoretical model. Generally, results provide an insight on the impact of the different effects dominating the behavior of the bearing in the respective speed ranges, and therefore, improve the understanding of complex bearing systems. Finally, the quality of results of approximation formulas that are easier to implement and more time efficient than the complex FE-code is investigated.

References

1.
Desbordes
,
H.
,
Fillon
,
M.
,
Frêne
,
J.
, and
Chan Hew Wai
,
C.
,
1995
, “
The Effects of Three-Dimensional Pad Deformations on Tilting-Pad Journal Bearings Under Dynamic Loading
,”
ASME J. Tribol.
,
117
(
3
), pp.
379
384
.10.1115/1.2831262
2.
Hagemann
,
T.
,
Kukla
,
S.
, and
Schwarze
,
H.
,
2013
, “
Measurement and Prediction of the Static Operating Conditions of a Large Turbine Tilting-Pad Bearing Under High Circumferential Speeds and Heavy Loads
,”
ASME
Paper No. GT2013-95004.10.1115/GT2013-95004
3.
Ettles
,
C.
,
1980
, “
The Analysis and Performance of Pivoted Pad Journal Bearings Considering Thermal and Elastic Effects
,”
ASME J. Lubr. Technol.
,
102
(
2
), pp.
182
191
.10.1115/1.3251465
4.
He
,
M.
,
2003
, “
Thermoelastohydrodynamic Analysis of Fluid Film Journal Bearings
,”
Ph.D. thesis
,
University of Virginia
,
Charlottesville, VA
.https://www.proquest.com/openview/889298c5c65ef4514067d2c9919a2413/1?pqorigsite=gscholar&cbl=18750&diss=y
5.
Fuchs
,
A.
,
2002
, “
High-Speed Journal Bearings Under Instationary Operation
,” Ph.D. thesis,
Technical University of Braunschweig
,
Braunschweig, Germany (in German)
.
6.
Hopf
,
G.
, and
Schüler
,
D.
,
1989
, “
Investigations on Large Turbine Bearings Working Under Transitional Conditions Between Laminar and Turbulent Flow
,”
ASME J. Tribol.
,
111
(
4
), pp.
628
634
.10.1115/1.3261987
7.
Kukla
,
S.
,
Buchhorn
,
N.
, and
Bender
,
B.
,
2017
, “
Design of an Axially Concave Pad Profile for a Large Turbine Tilting-Pad Bearing
,”
Proc. Inst. Mech. Eng., Part J–J. Eng. Tribol.
,
231
(
4
), pp.
479
488
.10.1177/1350650115592919
8.
Kukla
,
S.
,
2018
, “
Improvement of the Load Carrying Capacity of a Large Tilting-Pad Journal Bearing by an Axial Crowning on the Sliding Surface
,” Ph.D. thesis,
RU Bochum
,
Bochum, Germany (in German)
.
9.
Kirk
,
R. G. U.
, and
Reedy
,
S. W.
,
1988
, “
Evaluation of Pivot Stiffness for Typical Tilting-Pad Journal Bearing Designs
,”
ASME J. Vib. Acoust.
,
110
(
2
), pp.
165
171
.10.1115/1.3269494
10.
Kim
,
J.
,
Palazzolo
,
A. B.
, and
Gadangi
,
R. K.
,
1994
, “
TEHD Analysis for Tilting-Pad Journal Bearings Using Upwind Finite Element Method
,”
Tribol. Trans.
,
37
(
4
), pp.
771
783
.10.1080/10402009408983359
11.
Arihara
,
H.
,
Kameyama
,
Y.
,
Baba
,
Y.
, and
San Andrés
,
L.
,
2019
, “
A Thermoelastohydrodynamic Analysis for the Static Performance of High-Speed Heavy Load Tilting-Pad Journal Bearing Operating in the Turbulent Flow Regime and Comparisons to Test Data
,”
ASME J. Eng. Gas. Turbines Power
,
141
(
2
), p.
021023
.10.1115/1.4041130
12.
Yang
,
J.
, and
Palazzolo
,
A.
,
2022
, „“
Tilt Pad Bearing Distributed Pad Inlet Temperature With Machine Learning—Part I: Static and Dynamic Characteristics
,”
ASME J. Tribol.
,
144
(
6
), p.
061801
.10.1115/1.4052171
13.
Taniguchi
,
S.
,
Makino
,
T.
,
Takeshita
,
K.
, and
Ichimura
,
T.
,
1990
, “
A Thermohydrodynamic Analysis of Large Tilting-Pad Journal Bearing in Laminar and Turbulent Flow Regimes With Mixing
,”
ASME J. Tribol.
,
112
(
3
), pp.
542
548
.10.1115/1.2920291
14.
Hagemann
,
T.
,
Vetter
,
D.
,
Wettmarshausen
,
S.
,
Stottrop
,
M.
,
Engels
,
A.
,
Weißbacher
,
C.
,
Bender
,
B.
, and
Schwarze
,
H.
,
2022
, “
A Design for High-Speed Journal Bearings With Reduced Pad Size and Improved Efficiency
,”
Lubricants
,
10
(
11
), p.
313
.10.3390/lubricants10110313
15.
Sano
,
T.
,
Magoshi
,
R.
,
Shinohara
,
T.
,
Yoshimine
,
C.
,
Nishioka
,
T.
,
Tochitani
,
N.
, and
Sumi
,
Y.
,
2015
, “
Confirmation of Performance and Reliability of Direct Lubricated Tilting Two Pads Bearing
,”
Proc. Inst. Mech. Eng., Part J–J. Eng. Tribol.
,
229
(
8
), pp.
1011
1021
.10.1177/1350650115579945
16.
Zhang
,
F.
,
Ouyang
,
W.
,
Hong
,
H.
,
Guan
,
Y.
,
Yuan
,
X.
, and
Dong
,
G.
,
2015
, “
Experimental Study on Pad Temperature and Film Thickness of Tilting-Pad Journal Bearings With an Elastic-Pivot Pad
,”
Tribol. Int.
,
88
, pp.
228
235
.10.1016/j.triboint.2015.03.030
17.
Mermertas
,
Ü.
,
Hagemann
,
T.
, and
Brichart
,
C.
,
2019
, “
Optimization of a 900 mm Tilting-Pad Journal Bearing in Large Steam Turbines by Advanced Modeling and Validation
,”
ASME J. Eng. Gas. Turbines Power
,
141
(
2
), p.
021033
.10.1115/1.4041116
18.
Yang
,
J.
, and
Palazzolo
,
A.
,
2019
, “
Three-Dimensional Thermo-Elasto-Hydrodynamic Computational Fluid Dynamics Model of a Tilting Pad Journal Bearing – Part I: Static Response
,”
ASME J. Tribol.
,
141
(
6
), p.
061702
.10.1115/1.4043349
19.
Betti
,
A.
,
Forte
,
P.
, and
Ciulli
,
E.
,
2022
, “
Turbulence Effects in Tilting Pad Journal Bearings: A Review
,”
Lubricants
,
10
(
8
), p.
171
.10.3390/lubricants10080171
20.
Constantinescu
,
V. N.
,
1973
, “
Basic Relationships in Turbulent Lubrication and Their Extension to Include Thermal Effects
,”
ASME J. Lubr. Technol.
,
95
(
2
), pp.
147
154
.10.1115/1.3451755
21.
Hirs
,
G. G.
,
1973
, “
A Bulk-Flow Theory for Turbulence in Lubricant Films
,”
ASME J. Lubr. Technol.
,
95
(
2
), pp.
137
145
.10.1115/1.3451752
22.
Elrod
,
H. G.
, and
Ng
,
C. W.
,
1967
, “
A Theory of Turbulent Fluid Films and Its Applications to Bearings
,”
ASME J. Lubr. Technol.
,
89
(
3
), pp.
346
362
.10.1115/1.3616989
23.
Hagemann
,
T.
, and
Schwarze
,
H.
,
2019
, “
A Model for Oil Flow and Fluid Temperature Inlet Mixing in Hydrodynamic Journal Bearings
,”
ASME J. Tribol.
,
141
(
2
), p.
021701
.10.1115/1.4041211
24.
Mittwollen
,
N.
,
1990
, “
Operating Behavior of Journal Bearings at High Circumferential Speeds and High Thermal Loads – Theoretical Investigations
,” VDI Series 1, No. 187, VDI-Verlag, Dusseldorf, Germany (in German).
25.
Schlichting
,
H.
, and
Gersten
,
E.
,
2006
,
Boundary Layer Theory
, 10th ed.,
Springer-Verlag
,
Berlin and Heidelberg, Germany
.
26.
Dowson
,
D.
,
1962
, “
A Generalized Reynolds Equation for Fluid Film Lubrication
,”
Int. J. Mech. Sci.
,
4
(
2
), pp.
159
170
.10.1016/S0020-7403(62)80038-1
27.
Elrod
,
H. G.
,
1981
, “
A Cavitation Algorithm
,”
ASME J. Lubr. Technol.
,
103
(
3
), pp.
350
354
.10.1115/1.3251669
28.
Falz
,
E.
,
1931
,
Grundzüge Der Schmierungstechnik
,
Springer
,
Berlin, Heidelberg, Germany
.
29.
Hagemann
,
T.
,
Zeh
,
C.
, and
Schwarze
,
H.
,
2019
, “
Heat Convection Coefficients of a Tilting-Pad Journal Bearing With Directed Lubrication
,”
Tribol. Int.
,
136
, pp.
114
126
.10.1016/j.triboint.2019.03.035
30.
Mittwollen
,
N.
,
Rückert
,
A.
,
Schmitz
,
A.
, and
Reinhardt
,
W.-D.
,
1991
, “
Sliding Bearing Investigations
,” Braunschweig, Technical University of Braunschweig, Report No. 03T0012A 11 (in German).
31.
Young
,
W. C.
, and
Budynas
,
R. G.
,
2002
,
Roark's Formulas for Stress and Strain
, 7th ed.,
McGraw-Hill
,
New York
.
You do not currently have access to this content.