Abstract

The fully compressible, density-based CFD-solver TRACE has been extended for simulations of turbulent reacting flows in aero engine gas turbine combustors. The flamelet generated manifolds combustion model is utilized to account for detailed chemical kinetics and combined with the dynamically thickened flame model to resolve the flame front on the large eddy simulation (LES) mesh. The chemistry tabulation is coupled with the LES solver by inversion of the transported energy equation using tabulated mixture averaged NASA polynomial coefficients. LES of the PRECCINSTA test case, a lean, partially premixed swirl combustor are performed and the two distinctive regimes are correctly predicted: a stable regime with a “quite” stable flame and an unstable regime with an oscillating flame driven by self-excited thermoacoustic instabilities. Statistics collected from the simulations, mean, and root-mean-square values are in good agreement with the experimental reference data for both operating conditions. The dominant frequency of the unstable flame deviates from the measurement by about 100 Hz and requires further investigation. The results demonstrate the general suitability of the simulation framework for reacting flow simulations in gas turbine combustion systems and the prediction of self-excited thermoacoustic oscillations.

References

1.
Lieuwen
,
T.
, and
McManus
,
K.
,
2003
, “
Introduction: Combustion Dynamics in Lean-Premixed Prevaporized (LPP) Gas Turbines
,”
J. Propul. Power
,
19
(
5
), p.
721
.10.2514/2.6171
2.
Bellows
,
B. D.
,
Bobba
,
M. K.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T.
,
2007
, “
Nonlinear Flame Transfer Function Characteristics in a Swirl-Stabilized Combustor
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
954
961
.10.1115/1.2720545
3.
Lieuwen
,
T.
,
2003
, “
Modeling Premixed Combustion-Acoustic Wave Interactions: A Review
,”
J. Propul. Power
,
19
(
5
), pp.
765
781
.10.2514/2.6193
4.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
5.
Angelberger
,
C.
,
Veynante
,
D.
, and
Egolfopoulos
,
F.
,
2000
, “
LES of Chemical and Acoustic Forcing of a Premixed Dump Combustor
,”
Flow, Turbul. Combust.
,
65
(
2
), pp.
205
222
.10.1023/A:1011477030619
6.
Polifke
,
W.
,
Poncet
,
A.
,
Paschereit
,
C. O.
, and
Döbbeling
,
K.
,
2001
, “
Reconstruction of Acoustic Transfer Matrices by Instationary Computational Fluid Dynamics
,”
J. Sound Vib.
,
245
(
3
), pp.
483
510
.10.1006/jsvi.2001.3594
7.
Kaufmann
,
A.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2002
, “
Flow Forcing Techniques for Numerical Simulation of Combustion Instabilities
,”
Combust. Flame
,
131
(
4
), pp.
371
385
.10.1016/S0010-2180(02)00419-4
8.
Martin
,
C. E.
,
Benoit
,
L.
,
Sommerer
,
Y.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2006
, “
Large-Eddy Simulation and Acoustic Analysis of a Swirled Staged Turbulent Combustor
,”
AIAA J.
,
44
(
4
), pp.
741
750
.10.2514/1.14689
9.
Schmitt
,
P.
,
Poinsot
,
T.
,
Schuermans
,
B.
, and
Geigle
,
K. P.
,
2007
, “
Large-Eddy Simulation and Experimental Study of Heat Transfer, Nitric Oxide Emissions and Combustion Instability in a Swirled Turbulent High-Pressure Burner
,”
J. Fluid Mech.
,
570
, pp.
17
46
.10.1017/S0022112006003156
10.
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
,
Boudier
,
G.
, and
Poinsot
,
T.
,
2009
, “
Large Eddy Simulation of Self Excited Azimuthal Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2909
2916
.10.1016/j.proci.2008.05.033
11.
Franzelli
,
B.
,
Riber
,
E.
,
Gicquel
,
L. Y.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulation of Combustion Instabilities in a Lean Partially Premixed Swirled Flame
,”
Combust. Flame
,
159
(
2
), pp.
621
637
.10.1016/j.combustflame.2011.08.004
12.
Tachibana
,
S.
,
Saito
,
K.
,
Yamamoto
,
T.
,
Makida
,
M.
,
Kitano
,
T.
, and
Kurose
,
R.
,
2015
, “
Experimental and Numerical Investigation of Thermo-Acoustic Instability in a Liquid-Fuel Aero-Engine Combustor at Elevated Pressure: Validity of Large-Eddy Simulation of Spray Combustion
,”
Combust. Flame
,
162
(
6
), pp.
2621
2637
.10.1016/j.combustflame.2015.03.014
13.
Lourier
,
J.-M.
,
Stöhr
,
M.
,
Noll
,
B.
,
Werner
,
S.
, and
Fiolitakis
,
A.
,
2017
, “
Scale Adaptive Simulation of a Thermoacoustic Instability in a Partially Premixed Lean Swirl Combustor
,”
Combust. Flame
,
183
, pp.
343
357
.10.1016/j.combustflame.2017.02.024
14.
Chen
,
Z. X.
,
Langella
,
I.
,
Swaminathan
,
N.
,
Stöhr
,
M.
,
Meier
,
W.
, and
Kolla
,
H.
,
2019
, “
Large Eddy Simulation of a Dual Swirl Gas Turbine Combustor: Flame/Flow Structures and Stabilisation Under Thermoacoustically Stable and Unstable Conditions
,”
Combust. Flame
,
203
, pp.
279
300
.10.1016/j.combustflame.2019.02.013
15.
Noh
,
D.
,
Karlis
,
E.
,
Navarro-Martinez
,
S.
,
Hardalupas
,
Y.
,
Taylor
,
A. M. K. P.
,
Fredrich
,
D.
, and
Jones
,
W. P.
,
2019
, “
Azimuthally-Driven Subharmonic Thermoacoustic Instabilities in a Swirl-Stabilised Combustor
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5333
5341
.10.1016/j.proci.2018.07.090
16.
Schulz
,
O.
,
Doll
,
U.
,
Ebi
,
D.
,
Droujko
,
J.
,
Bourquard
,
C.
, and
Noiray
,
N.
,
2019
, “
Thermoacoustic Instability in a Sequential Combustor: Large Eddy Simulation and Experiments
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5325
5332
.10.1016/j.proci.2018.07.089
17.
Lo Schiavo
,
E.
,
Laera
,
D.
,
Riber
,
E.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2020
, “
Effects of Liquid Fuel/Wall Interaction on Thermoacoustic Instabilities in Swirling Spray Flames
,”
Combust. Flame
,
219
, pp.
86
101
.10.1016/j.combustflame.2020.04.015
18.
Fredrich
,
D.
,
Jones
,
W. P.
, and
Marquis
,
A. J.
,
2021
, “
Thermo-Acoustic Instabilities in the PRECCINSTA Combustor Investigated Using a Compressible LES-Pdf Approach
,”
Flow, Turbul. Combust.
,
106
(
4
), pp.
1399
1415
.10.1007/s10494-020-00177-3
19.
Meier
,
W.
,
Weigand
,
P.
,
Duan
,
X.
, and
Giezendannerthoben
,
R.
,
2007
, “
Detailed Characterization of the Dynamics of Thermoacoustic Pulsations in a Lean Premixed Swirl Flame
,”
Combust. Flame
,
150
(
1–2
), pp.
2
26
.10.1016/j.combustflame.2007.04.002
20.
Moureau
,
V.
,
Bérat
,
C.
, and
Pitsch
,
H.
,
2007
, “
An Efficient Semi-Implicit Compressible Solver for Large-Eddy Simulations
,”
J. Comput. Phys.
,
226
(
2
), pp.
1256
1270
.10.1016/j.jcp.2007.05.035
21.
Galpin
,
J.
,
Naudin
,
A.
,
Vervisch
,
L.
,
Angelberger
,
C.
,
Colin
,
O.
, and
Domingo
,
P.
,
2008
, “
Large-Eddy Simulation of a Fuel-Lean Premixed Turbulent Swirl-Burner
,”
Combust. Flame
,
155
(
1–2
), pp.
247
266
.10.1016/j.combustflame.2008.04.004
22.
Fiorina
,
B.
,
Vicquelin
,
R.
,
Auzillon
,
P.
,
Darabiha
,
N.
,
Gicquel
,
O.
, and
Veynante
,
D.
,
2010
, “
A Filtered Tabulated Chemistry Model for LES of Premixed Combustion
,”
Combust. Flame
,
157
(
3
), pp.
465
475
.10.1016/j.combustflame.2009.09.015
23.
Moureau
,
V.
,
Domingo
,
P.
, and
Vervisch
,
L.
,
2011
, “
From Large-Eddy Simulation to Direct Numerical Simulation of a Lean Premixed Swirl Flame: Filtered Laminar Flame-PDF Modeling
,”
Combust. Flame
,
158
(
7
), pp.
1340
1357
.10.1016/j.combustflame.2010.12.004
24.
Franzelli
,
B.
,
Riber
,
E.
, and
Cuenot
,
B.
,
2013
, “
Impact of the Chemical Description on a Large Eddy Simulation of a Lean Partially Premixed Swirled Flame
,”
C. R. Méc.
,
341
(
1–2
), pp.
247
256
.10.1016/j.crme.2012.11.007
25.
Wang
,
P.
,
Platova
,
N. A.
,
Fröhlich
,
J.
, and
Maas
,
U.
,
2014
, “
Large Eddy Simulation of the PRECCINSTA Burner
,”
Int. J. Heat Mass Transfer
,
70
, pp.
486
495
.10.1016/j.ijheatmasstransfer.2013.11.025
26.
Gövert
,
S.
,
Mira
,
D.
,
Kok
,
J. B. W.
,
Vázquez
,
M.
, and
Houzeaux
,
G.
,
2018
, “
The Effect of Partial Premixing and Heat Loss on the Reacting Flow Field Prediction of a Swirl Stabilized Gas Turbine Model Combustor
,”
Flow, Turbul. Combust.
,
100
(
2
), pp.
503
534
.10.1007/s10494-017-9848-4
27.
Benard
,
P.
,
Lartigue
,
G.
,
Moureau
,
V.
, and
Mercier
,
R.
,
2019
, “
Large-Eddy Simulation of the Lean-Premixed PRECCINSTA Burner With Wall Heat Loss
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5233
5243
.10.1016/j.proci.2018.07.026
28.
Agostinelli
,
P.
,
Laera
,
D.
,
Boxx
,
I.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2021
, “
Impact of Wall Heat Transfer in Large Eddy Simulation of Flame Dynamics in a Swirled Combustion Chamber
,”
Combust. Flame
,
234
, p.
111728
.10.1016/j.combustflame.2021.111728
29.
Fredrich
,
D.
,
Jones
,
W. P.
, and
Marquis
,
A. J.
,
2021
, “
A Combined Oscillation Cycle Involving Self-Excited Thermo-Acoustic and Hydrodynamic Instability Mechanisms
,”
Phys. Fluids
,
33
(
8
), p.
085122
.10.1063/5.0057521
30.
Becker
,
K.
,
Heitkamp
,
K.
, and
Kügeler
,
E.
,
2010
, “
Recent Progress in a Hybrid-Grid CFD Solver for Turbomachinery Flows
,”
Proceedings of the Fifth European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010
, Lisabon, Portugal, June 14–17.https://www.researchgate.net/publication/225006412_Recent_Progress_In_A_Hybrid-Grid_CFD_Solver_For_Turbomachinery_Flows
31.
van Oijen
,
J.
, and
de Goey
,
L.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.10.1080/00102200008935814
32.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
33.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
R. T. Edwards
,
Philadelphia, PA
.
34.
Butler
,
T. D.
, and
O'Rourke
,
P. J.
,
1977
, “
A Numerical Method for Two Dimensional Unsteady Reacting Flows
,”
Symp. (Int.) Combust.
,
16
(
1
), pp.
1503
1515
.10.1016/S0082-0784(77)80432-3
35.
Legier
,
J. P.
,
Poinsot
,
T.
, and
Veynante
,
D.
,
2000
, “
Dynamically Thickened Flame LES Model for Premixed and Non-Premixed Turbulent Combustion
,”
Proceedings of the Summer Program 2000
, Standford, CA, Nov., pp.
157
168
.https://web.stanford.edu/group/ctr/ctrsp00/poinsot.pdf
36.
Durand
,
L.
, and
Polifke
,
W.
,
2007
, “
Implementation of the Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion in a Commercial Solver
,”
ASME
Paper No. GT2007-28188.10.1115/GT2007-28188
37.
Wang
,
G.
,
Boileau
,
M.
, and
Veynante
,
D.
,
2011
, “
Implementation of a Dynamic Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Combust. Flame
,
158
(
11
), pp.
2199
2213
.10.1016/j.combustflame.2011.04.008
38.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion Part I: Non-Dynamic Formulation and Initial Tests
,”
Combust. Flame
,
131
(
1–2
), pp.
159
180
.10.1016/S0010-2180(02)00400-5
39.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
40.
Goodwin
,
D. G.
,
Moffat
,
H. K.
,
Schoegl
,
I.
,
Speth
,
R. L.
, and
Weber
,
B. W.
,
2021
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Cantera, Geneva, Switzerland, Version 2.5.1.10.5281/zenodo.4527812
41.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner Jr.
,
W. C.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, 2022, “
GRI-Mech 3.0
,” accessed Aug. 16, 2022, http://combustion.berkeley.edu/gri_mech/
42.
Ketelheun
,
A.
,
Olbricht
,
C.
,
Hahn
,
F.
, and
Janicka
,
J.
,
2009
, “
Premixed Generated Manifolds for the Computation of Technical Combustion Systems
,”
ASME
Paper No. GT2009-59940.10.1115/GT2009-59940
43.
Domingo
,
P.
,
Vervisch
,
L.
, and
Veynante
,
D.
,
2008
, “
Large-Eddy Simulation of a Lifted Methane Jet Flame in a Vitiated Coflow
,”
Combust. Flame
,
152
(
3
), pp.
415
432
.10.1016/j.combustflame.2007.09.002
44.
Vicquelin
,
R.
,
Fiorina
,
B.
,
Payet
,
S.
,
Darabiha
,
N.
, and
Gicquel
,
O.
,
2011
, “
Coupling Tabulated Chemistry With Compressible CFD Solvers
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1481
1488
.10.1016/j.proci.2010.05.036
45.
Mcbride
,
B. J.
,
Gordon
,
S.
, and
Reno
,
M. A.
,
1993
, “
Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species
,” National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH, Technical Report No.
NASA-TM-4513
.https://ntrs.nasa.gov/citations/19940013151
46.
Kitamura
,
K.
, and
Hashimoto
,
A.
,
2016
, “
Reduced Dissipation AUSM-Family Fluxes: HR-SLAU2 and HR-AUSM+-Up for High Resolution Unsteady Flow Simulations
,”
Comput. Fluids
,
126
, pp.
41
57
.10.1016/j.compfluid.2015.11.014
47.
Venkatakrishnan
,
V.
,
1993
, “
On the Accuracy of Limiters and Convergence to Steady State Solutions
,”
AIAA
Paper No. 93-880.10.2514/6.93-880
48.
Becker
,
K. C.
, and
Ashcroft
,
G.
,
2014
, “
A Comparative Study of Gradient Reconstruction Methods for Unstructured Meshes With Application to Turbomachinery Flows
,”
AIAA
Paper No. 2014-0069.10.2514/6.2014-0069
49.
Thomas
,
J. L.
,
Diskin
,
B.
, and
Nishikawa
,
H.
,
2011
, “
A Critical Study of Agglomerated Multigrid Methods for Diffusion on Highly-Stretched Grids
,”
Comput. Fluids
,
41
(
1
), pp.
82
93
.10.1016/j.compfluid.2010.09.023
50.
Giles
,
M. B.
,
1990
, “
Nonreflecting Boundary Conditions for Euler Equation Calculations
,”
AIAA J.
,
28
(
12
), pp.
2050
2058
.10.2514/3.10521
51.
Giles
,
M.
,
1991
, “
UNSFLO: A Numerical Method for the Calculation of Unsteady Flow in Turbomachinery
,” Gas Turbine Laboratory, Massachusetts Institute of Technology, Cambridge, MA, Technical Report No.
205
.http://hdl.handle.net/1721.1/104744
52.
Kersken
,
H.-P.
,
Ashcroft
,
G.
,
Frey
,
C.
,
Wolfrum
,
N.
, and
Korte
,
D.
,
2014
, “
Nonreflecting Boundary Conditions for Aeroelastic Analysis in Time and Frequency Domain 3D RANS Solvers
,”
ASME
Paper No. GT2014-25499.10.1115/GT2014-25499
53.
Schlüß
,
D.
,
Frey
,
C.
, and
Ashcroft
,
G.
,
2016
, “
Consistent Non-Reflecting Boundary Conditions for Both Steady and Unsteady Flow Simulations in Turbomachinery Applications
,”
Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering
(
ECCOMAS Congress 2016
), Crete, Greece, June 5–10, pp.
7403
7422
.10.7712/100016.2342.5411
54.
Fredrich
,
D.
,
Jones
,
W.
, and
Marquis
,
A. J.
,
2019
, “
The Stochastic Fields Method Applied to a Partially Premixed Swirl Flame With Wall Heat Transfer
,”
Combust. Flame
,
205
, pp.
446
456
.10.1016/j.combustflame.2019.04.012
55.
Stöhr
,
M.
,
Yin
,
Z.
, and
Meier
,
W.
,
2017
, “
Interaction Between Velocity Fluctuations and Equivalence Ratio Fluctuations During Thermoacoustic Oscillations in a Partially Premixed Swirl Combustor
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3907
3915
.10.1016/j.proci.2016.06.084
56.
Spalding
,
D. B.
,
1961
, “
A Single Formula for the ‘Law of the Wall
,’”
ASME J. Appl. Mech.
,
28
(
3
), pp.
455
458
.10.1115/1.3641728
57.
Kader
,
B. A.
,
1981
, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
,
24
(
9
), pp.
1541
1544
.10.1016/0017-9310(81)90220-9
58.
Le Bras
,
S.
,
Deniau
,
H.
,
Bogey
,
C.
, and
Daviller
,
G.
,
2017
, “
Development of Compressible Large-Eddy Simulations Combining High-Order Schemes and Wall Modeling
,”
AIAA J.
,
55
(
4
), pp.
1152
1163
.10.2514/1.J055107
59.
Reichardt
,
H.
,
1951
, “
Vollständige Darstellung Der Turbulenten Geschwindigkeitsverteilung in Glatten Leitungen
,”
ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech.
,
31
(
7
), pp.
208
219
.10.1002/zamm.19510310704
You do not currently have access to this content.