Abstract

Low-speed axial fans must comply with a wide number of standards and normative restrictions, often related to the maximum noise emission levels. Among the noise control techniques in axial fans, skewed fan blades and leading edge serrations have been found to be effective in leading edge noise control, which represents one of the dominant phenomena in axial fan broadband emissions. However, these solutions are usually applied separately, and literature is scarce on systematic studies on the coupling of the two modifications. In this work, a campaign of experimental measurements was conducted on unskewed and forward-skewed axial fan blades with and without leading-edge serrations. The tests were performed in undisturbed inflow conditions. The flow field and the turbulence characteristics were measured using three-dimensional hot-wire anemometry. The suction-side sound radiation of the fans was measured with microphones in an anechoic chamber. In addition, the rotating beamforming method was used to localize the sound sources at the axial fans. It was found that, regardless of the blade skew, the leading edge serrations lead to a reduction of the sound pressure level, whereby the aerodynamic properties of the fan decrease. At the same operating points, which were achieved by adjusting the rotational speed, the sound radiation through the leading edge serrations could be reduced at high-volume flows. This effect was more pronounced with the unskewed rotor, which indicates that the positive effect of the serrations is reduced by the already optimized shape of the forward skewed fan blade. Based on the experimental results, the four geometries were further considered for numerical investigations to understand how the serrations affect the fan operations and the overall aerodynamics of the rotor. All four geometries were simulated with RANS approach at the duty point to derive a flow survey and better understand the dynamics driven by serrations and blade skewing.

References

1.
Czwielong
,
F.
,
Soldat
,
J.
, and
Becker
,
S.
,
2022
, “
On the Interactions of the Induced Flow Field of Heat Exchangers With Axial Fans
,”
Exp. Therm. Fluid Sci.
,
139
, p.
110697
.10.1016/j.expthermflusci.2022.110697
2.
Lucius
,
A.
,
Schneider
,
M.
,
Schweitzer-De Bortoli
,
S.
,
Gerhard
,
T.
, and
Geyer
,
T.
,
2019
, “
Aeroacoustic Simulation and Experimental Validation of Sound Emission of an Axial Fan Applied in a Heat Pump
,”
Proceedings of the 23rd International Congress on Acoustics
,
Aachen, Germany, Sept. 9–13
.https://pub.degaakustik.de/ICA2019/data/articles/001077.pdf
3.
Czwielong
,
F.
,
Hruška
,
V.
,
Bednařík
,
M.
, and
Becker
,
S.
,
2021
, “
On the Acoustic Effects of Sonic Crystals in Heat Exchanger Arrangements
,”
Appl. Acoust.
,
182
, p.
108253
.10.1016/j.apacoust.2021.108253
4.
Atmaca
,
E.
,
Peker
,
I.
, and
Altin
,
A.
,
2005
, “
Industrial Noise and Its Effects on Humans
,”
Pol. J. Environ. Stud.
,
14
(
6
), pp.
721
726
.http://www.pjoes.com/Industrial-Noise-and-Its-Effects-on-Humans,87814,0,2.html
5.
Begou
,
P.
,
Kassomenos
,
P.
, and
Kelessis
,
A.
,
2020
, “
Effects of Road Traffic Noise on the Prevalence of Cardiovascular Diseases: The Case of Thessaloniki, Greece
,”
Sci. Total Environ.
,
703
, p.
134477
.10.1016/j.scitotenv.2019.134477
6.
Staseva
,
E.
,
Kvitkina
,
M.
,
Litvinov
,
A.
, and
Kobzeva
,
N.
,
2020
, “
The Effect of Noise on the Human Body, in Particular, on Cardiovascular Diseases
,”
E3S Web Conf.
,
164
, p.
01028
.10.1051/e3sconf/202016401028
7.
Kessler
,
D.
,
Friedrichs
,
J.
, and
Lörcher
,
F.
,
2022
, “
Influence of Winglets on the Tip Vortex of Low Pressure Axial Fans
,”
FAN 2022
, Senlis, France, June 27–29.https://tuprints.ulb.tu-darmstadt.de/21733/1/fp-7-KESSLER.pdf
8.
Carolus
,
T.
,
2020
,
Ventilatoren: Aerodynamischer Entwurf–Konstruktive Lärmminderung–Optimierung
,
Springer-Verlag
, Berlin.
9.
Kameier
,
F.
, and
Neise
,
W.
,
1997
, “
Experimental Study of Tip Clearance Losses and Noise in Axial Turbomachines and Their Reduction
,”
ASME J. Turbomach.
,
119
(
3
), pp.
460
471
.10.1115/1.2841145
10.
Ye
,
X.
,
Zheng
,
N.
,
Zhang
,
R.
, and
Li
,
C.
,
2022
, “
Effect of Serrated Trailing-Edge Blades on Aerodynamic Noise of an Axial Fan
,”
J. Mech. Sci. Technol.
,
36
(
6
), pp.
2937
2948
.10.1007/s12206-022-0526-7
11.
Krömer
,
F. J.
,
2018
, “
Sound Emission of Low-Pressure Axial Fans Under Distorted Inflow Conditions
,”
Doctoral thesis
,
FAU University Press, Boca Raton, FL
.10.25593/978-3-96147-089-1
12.
Corsini
,
A.
, and
Rispoli
,
F.
,
2004
, “
Using Sweep to Extend the Stall-Free Operational Range in Axial Fan Rotors
,”
Proc. Inst. Mech. Eng., Part A
,
218
(
3
), pp.
129
139
.10.1243/095765004323049869
13.
Ocker
,
C.
,
Czwielong
,
F.
,
Chaitanya
,
P.
,
Pannert
,
W.
, and
Becker
,
S.
,
2022
, “
Aerodynamic and Aeroacoustic Properties of Axial Fan Blades With Slitted Leading Edges
,”
Acta Acust.
,
6
, p.
48
.10.1051/aacus/2022043
14.
Ocker
,
C.
,
Geyer
,
T. F.
,
Czwielong
,
F.
,
Krömer
,
F.
,
Pannert
,
W.
,
Merkel
,
M.
, and
Becker
,
S.
,
2021
, “
Permeable Leading Edges for Airfoil and Fan Noise Reduction in Disturbed Inflow
,”
AIAA J.
,
59
(
12
), pp.
4969
4986
.10.2514/1.J060396
15.
Zamponi
,
R.
,
Satcunanathan
,
S.
,
Moreau
,
S.
,
Ragni
,
D.
,
Meinke
,
M.
,
Schröder
,
W.
, and
Schram
,
C.
,
2020
, “
On the Role of Turbulence Distortion on Leading-Edge Noise Reduction by Means of Porosity
,”
J. Sound Vib.
,
485
, p.
115561
.10.1016/j.jsv.2020.115561
16.
Bowen
,
L.
,
Celik
,
A.
,
Zhou
,
B.
,
Westin
,
M. F.
, and
Azarpeyvand
,
M.
,
2022
, “
The Effect of Leading Edge Porosity on Airfoil Turbulence Interaction Noise
,”
J. Acoust. Soc. Am.
,
152
(
3
), pp.
1437
1448
.10.1121/10.0013703
17.
Corsini
,
A.
,
Delibra
,
G.
, and
Sheard
,
A. G.
,
2014
, “
The Application of Sinusoidal Blade-Leading Edges in a Fan-Design Methodology to Improve Stall Resistance
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
3
), pp.
255
271
.10.1177/0957650913514229
18.
Rong
,
J.
, and
Liu
,
H.
,
2022
, “
Aeroacoustic Interaction Between Owl-Inspired Trailing-Edge Fringes and Leading-Edge Serrations
,”
Phys. Fluids
,
34
(
1
), p.
011907
.10.1063/5.0078974
19.
Biedermann
,
T. M.
,
Czeckay
,
P.
,
Geyer
,
T. F.
,
Kameier
,
F.
, and
Paschereit
,
C. O.
,
2019
, “
Effect of Inflow Conditions on the Noise Reduction Through Leading Edge Serrations
,”
AIAA J.
,
57
(
9
), pp.
4104
4109
.10.2514/1.J057831
20.
Biedermann
,
T.
,
Hintzen
,
N.
,
Kameier
,
F.
,
Chong
,
T. P.
, and
Paschereit
,
C. O.
,
2018
, “
On the Transfer of Leading Edge Serrations From Isolated Aerofoil to Ducted Low-Pressure Fan Application
,”
AIAA
Paper No. 2018-
2956
.10.2514/6.2018-2956
21.
Becker
,
S.
,
Riedel
,
J.
,
Kaltenbacher
,
M.
,
Schoder
,
S.
, and
Czwielong
,
F.
,
2022
, “
On the Fluid Mechanical and Acoustic Mechanisms of Serrated Leading Edges
,”
FAN 2022
, Senlis, France, June 27–29.https://tuprints.ulb.tu-darmstadt.de/21712/1/fp-99-BECKER.pdf
22.
Biedermann
,
T. M.
,
Hintzen
,
N.
, and
Kameier
,
F.
,
2022
, “
Aeroacoustic Interactions of Blade Skew and Leading Edge Serrations Applied to Low-Pressure Axial Fans
,”
ASME J. Eng. Gas Turbines Power
,
144
(
12
), p.
121022
.10.1115/1.4055637
23.
Krömer
,
F.
,
Czwielong
,
F.
, and
Becker
,
S.
,
2019
, “
Experimental Investigation of the Sound Emission of Skewed Axial Fans With Leading-Edge Serrations
,”
AIAA J.
,
57
(
12
), pp.
5182
5196
.10.2514/1.J058134
24.
Abbott
,
I. H.
, and
Von Doenhoff
,
A. E.
,
2012
,
Theory of Wing Sections: Including a Summary of Airfoil Data
, Dover Publications, Inc., New York
.
25.
Schoder
,
S.
,
Junger
,
C.
, and
Kaltenbacher
,
M.
,
2020
, “
Computational Aeroacoustics of the EAA Benchmark Case of an Axial Fan
,”
Acta Acust.
,
4
(
5
), p.
22
.10.1051/aacus/2020021
26.
Junger
,
C.
,
Reppenhagen
,
A.
,
Kaltenbacher
,
M.
, and
Becker
,
S.
,
2016
, “
Numerical Simulation of a Benchmark Case for Aerodynamics and Aeroacoustics of a Low Pressure Axial Fan
,”
INTER-NOISE and NOISE-CON Congress and Conference Proceedings
, Hamburg, Germany, Aug. 21–24, Vol.
253
, pp.
5785
5791
.https://publik.tuwien.ac.at/files/publik_252092.pdf
27.
Zenger
,
F.
,
Junger
,
C.
,
Kaltenbacher
,
M.
, and
Becker
,
S.
,
2016
, “
A Benchmark Case for Aerodynamics and Aeroacoustics of a Low Pressure Axial Fan
,”
SAE
Paper No. 2016-01-1805.10.4271/2016-01-1805
28.
Kruth
,
J.-P.
,
Wang
,
X.
,
Laoui
,
T.
, and
Froyen
,
L.
,
2003
, “
Lasers and Materials in Selective Laser Sintering
,”
Assem. Autom.
,
23
(
4
), pp.
357
371
.10.1108/01445150310698652
29.
Din
,
E.
,
2008
, “
5801–Industrial Fans— Performance Testing Using Standardized Airways
,” ISO-International Organization, Geneva, Switzerland, Standard No.
ISO 5801:2007
.https://www.iso.org/standard/56517.html
30.
Ocker
,
C.
, and
Pannert
,
W.
,
2020
, “
Acoustic Ray Method Derived With the Concept of Analogue Gravity for the Calculation of the Sound Field Due to Rotating Sound Sources
,”
Appl. Acoust.
,
168
, p.
107422
.10.1016/j.apacoust.2020.107422
31.
Ocker
,
C.
, and
Pannert
,
W.
,
2017
, “
Calculation of the Cross Spectral Matrix With Daniell's Method and Application to Acoustical Beamforming
,”
Appl. Acoust.
,
120
, pp.
59
69
.10.1016/j.apacoust.2017.01.011
32.
Sijtsma
,
P.
,
2007
, “
CLEAN Based on Spatial Source Coherence
,”
Int. J. Aeroacoustics
,
6
(
4
), pp.
357
374
.10.1260/147547207783359459
33.
Bruun
,
H. H.
,
1996
, “
Hot-Wire Anemometry: Principles and Signal Analysis
,”
Meas. Sci. Technol.
, 7(10), p.
24
.10.1088/0957-0233/7/10/024
34.
Czwielong
,
F.
,
Krömer
,
F.
, and
Becker
,
S.
,
2019
, “
Experimental Investigations of the Sound Emission of Axial Fans Under the Influence of Suction-Side Heat Exchangers
,”
AIAA
Paper No. 2019-
2618
.10.2514/6.2019-2618
35.
Czwielong
,
F.
, and
Becker
,
S.
,
2023
, “
Active Turbulence Grid-Controlled Inflow Turbulence and Replication of Heat Exchanger Flow Fields in Fan Applications
,”
Int. J. Turbomachinery Propul. Power
, 8(1), p.
1
.10.3390/ijtpp8010001
36.
Hurault
,
J.
,
Kouidri
,
S.
,
Bakir
,
F.
, and
Rey
,
R.
,
2010
, “
Experimental and Numerical Study of the Sweep Effect on Three-Dimensional Flow Downstream of Axial Flow Fans
,”
Flow Meas. Instrum.
,
21
(
2
), pp.
155
165
.10.1016/j.flowmeasinst.2010.02.003
37.
Sarradj
,
E.
,
2012
, “
Three-Dimensional Acoustic Source Mapping With Different Beamforming Steering Vector Formulations
,”
Adv. Acoust. Vib.
,
2012
, pp.
1
12
.10.1155/2012/292695
38.
Wagner
,
S.
,
Bareiß
,
R.
, and
Guidati
,
G.
,
1996
,
Wind Turbine Noise
,
Springer
,
Berlin
.
39.
Blake
,
W. K.
,
2017
,
Mechanics of Flow-Induced Sound and Vibration, Volume 2: Complex Flow-Structure Interactions
,
Academic Press
,
Cambridge, MA
.
40.
Corsini
,
A.
,
Delibra
,
G.
, and
Sheard
,
A. G.
,
2013
, “
On the Role of Leading-Edge Bumps in the Control of Stall Onset in Axial Fan Blades
,”
ASME J. Fluids Eng.
,
135
(
8
), p.
081104
.10.1115/1.4024115
You do not currently have access to this content.