Abstract

A three-stream combined Joule-Humphrey cycle that employs a heat recovery stream to function as a recuperator is presented. Based on an in-house developed thermodynamic performance tool, the operation of a modified dual-shaft turbofan engine is proposed. The engine core is modified by adding an intercooler and a reheating chamber to approach isothermal compression and expansion processes. A fraction of the primary flow is introduced into a reheat chamber that uses rotating detonation combustion (RDC) technology. The outflow of the RDC is then merged with the rest of the nucleus current before being discharged to the next turbine stage. The overall system behavior is captured by means of a nonlinear mathematical model featuring eight decision variables, including mass flow rates and compression ratios. A parametric analysis identifies the operational and performance envelope of the proposed engine concept. Ultimately, the model is endowed with an objective function, which includes global efficiency and thrust looking for an operation regime that boosts the thermodynamic performance. A generalized reduced gradient based algorithm is used to solve the nonlinear model, where each iteration solves a linearly constrained subproblem to generate a search direction. The performance and operational envelope presented here could be used as guidance for others considering the implementation of any of the discussed Joule cycle modifications or assessing the cost-effective balance of their use.

References

1.
Brouckaert
,
J.
,
2019
, “
An Outlook on the Future of Turbofans and Aircraft Propulsion Systems
,”
Proceedings of the EASN Conference
, Athens, Greece, pp.
3
6
.
2.
Alhussan
,
K.
,
Assad
,
M.
, and
Penazkov
,
O.
,
2016
, “
Analysis of the Actual Thermodynamic Cycle of the Detonation Engine
,”
Appl. Thermal Eng.
,
107
, pp.
339
344
.10.1016/j.applthermaleng.2016.03.103
3.
Sousa
,
J.
,
Paniagua
,
G.
, and
Morata
,
E. C.
,
2017
, “
Thermodynamic Analysis of a Gas Turbine Engine With a Rotating Detonation Combustor
,”
Appl. Energy
,
195
, pp.
247
256
.10.1016/j.apenergy.2017.03.045
4.
Lu
,
F. K.
, and
Braun
,
E. M.
,
2014
, “
Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts
,”
J. Propul. Power
,
30
(
5
), pp.
1125
1142
.10.2514/1.B34802
5.
Sakurai
,
T.
, and
Nakamura
,
S.
,
2020
, “
Performance and Operating Characteristics of Micro Gas Turbine Driven by Pulse, Pressure Gain Combustor
,”
ASME
Paper No. GT2020-15000.10.1115/GT2020-15000
6.
Braun
,
J.
,
Saavedra Garcia
,
J.
, and
Paniagua
,
G.
,
2017
, “
Evaluation of the Unsteadiness Across Nozzles Downstream of Rotating Detonation Combustors
,”
AIAA
Paper No. 2017-1063.10.2514/6.2017-1063
7.
Chen
,
W.
,
Fan
,
W.
,
Qiu
,
H.
,
Qin
,
H.
, and
Yan
,
C.
,
2012
, “
Thermodynamic Performance Analysis of Turbofan Engine With a Pulse Detonation Duct Heater
,”
Aerosp. Sci. Technol.
,
23
(
1
), pp.
206
212
.10.1016/j.ast.2011.07.002
8.
Espa
,
L. E. F.-V.
,
2014
, “
Investigation of Pulse Detonation Engine Flow Conditions for Turbomachinery Integration
,”
Master thesis
, Master of Science in Aerospace Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL.https://commons.erau.edu/cgi/viewcontent.cgi?article=1157&context=edt
9.
Braun
,
J.
,
Cuadrado
,
D. G.
,
Andreoli
,
V.
,
Paniagua
,
G.
,
Liu
,
Z.
,
Saavedra
,
J.
,
Athmanathan
,
V.
, and
Meyer
,
T.
,
2019
, “
Characterization of an Integrated Nozzle and Supersonic Axial Turbine With a Rotating Detonation Combustor
,”
AIAA
Paper No. 2019-3873.10.2514/6.2019-3873
10.
Braun
,
J.
, and
Paniagua
,
G.
,
2019
, “
Analysis of Advanced Turbine Integration With Rotating Detonation Combustors Using a Time-Accurate Reduced-Order Model
,”
Advances in Pulsed and Continuous Detonations
, Torus Press, Moscow, Russia, pp.
362
371
.10.30826/ICPCD201828
11.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2020
, “
Integration of a Transonic High-Pressure Turbine With a Rotating Detonation Combustor and a Diffuser
,”
Int. J. Turbo Jet-Eng.
, 40(1), pp.
1
10
.10.1515/tjeng-2020-0016
12.
Naples
,
A.
,
Hoke
,
J.
,
Battelle
,
R. T.
,
Wagner
,
M.
, and
Schauer
,
F. R.
,
2017
, “
RDE Implementation Into an Open-Loop T63 Gas Turbine Engine
,”
AIAA
Paper No. 2017-1747.10.2514/6.2017-1747
13.
Naples
,
A.
,
Hoke
,
J.
,
Battelle
,
R.
, and
Schauer
,
F.
,
2019
, “
T63 Turbine Response to Rotating Detonation Combustor Exhaust Flow
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021029
.10.1115/1.4041135
14.
Fievisohn
,
R. T.
,
Hoke
,
J.
,
Battelle
,
R. T.
,
Klingshirn
,
C.
,
Holley
,
A. T.
, and
Schumaker
,
S. A.
,
2021
, “
Closed Loop Integration of a Rotating Detonation Combustor in a T63 Gas Turbine Engine
,”
AIAA
Paper No. 2021-0900.10.2514/6.2021-0900
15.
Stathopoulos
,
P.
,
2018
, “
Comprehensive Thermodynamic Analysis of the Humphrey Cycle for Gas Turbines With Pressure Gain Combustion
,”
Energies
,
11
(
12
), p.
3521
.10.3390/en11123521
16.
Mushtaq
,
N.
,
Colella
,
G.
, and
Gaetani
,
P.
,
2022
, “
Design and Parametric Analysis of a Supersonic Turbine for Rotating Detonation Engine Applications
,”
Int. J. Turbomach., Propul. Power
,
7
(
1
), p.
1
.10.3390/ijtpp7010001
17.
Yang
,
C.
,
Wu
,
X.
,
Ma
,
H.
,
Peng
,
L.
, and
Gao
,
J.
,
2016
, “
Experimental Research on Initiation Characteristics of a Rotating Detonation Engine
,”
Exp. Therm. Fluid Sci.
,
71
, pp.
154
163
.10.1016/j.expthermflusci.2015.10.019
18.
Yi
,
T.-H.
,
Lou
,
J.
,
Turangan
,
C.
,
Choi
,
J.-Y.
, and
Wolanski
,
P.
,
2011
, “
Propulsive Performance of a Continuously Rotating Detonation Engine
,”
J. Propul. Power
,
27
(
1
), pp.
171
181
.10.2514/1.46686
19.
Asli
,
M.
,
Garan
,
N.
,
Neumann
,
N.
, and
Stathopoulos
,
P.
,
2021
, “
A Robust One-Dimensional Approach for the Performance Evaluation of Turbines Driven by Pulsed Detonation Combustion
,”
Energy Convers. Manage.
,
248
, p.
114784
.10.1016/j.enconman.2021.114784
20.
Kaemming
,
T.
,
Fotia
,
M. L.
,
Hoke
,
J.
, and
Schauer
,
F.
,
2017
, “
Thermodynamic Modeling of a Rotating Detonation Engine Through a Reduced-Order Approach
,”
J. Propul. Power
,
33
(
5
), pp.
1170
1178
.10.2514/1.B36237
21.
Vutthivithayarak
,
R.
,
Braun
,
E.
, and
Lu
,
F.
,
2012
, “
On Thermodynamic Cycles for Detonation Engines
,”
28th International Symposium on Shock Waves
,
Springer
, Manchester, UK, pp.
287
292
.https://arc.uta.edu/publications/cp_files/2645.pdf
22.
Nordeen
,
C. A.
,
Schwer
,
D.
,
Schauer
,
F.
,
Hoke
,
J.
,
Barber
,
T.
, and
Cetegen
,
B.
,
2014
, “
Thermodynamic Model of a Rotating Detonation Engine
,”
Combust., Explos., Shock Waves
,
50
(
5
), pp.
568
577
.10.1134/S0010508214050128
23.
Heiser
,
W. H.
, and
Pratt
,
D. T.
,
2002
, “
Thermodynamic Cycle Analysis of Pulse Detonation Engines
,”
J. Propul. Power
,
18
(
1
), pp.
68
76
.10.2514/2.5899
24.
Ji
,
Z.
,
Zhang
,
H.
, and
Wang
,
B.
,
2021
, “
Thermodynamic Performance Analysis of the Rotating Detonative Airbreathing Combined Cycle Engine
,”
Aerosp. Sci. Technol.
,
113
, p.
106694
.10.1016/j.ast.2021.106694
25.
McDonald
,
C. F.
, and
Wilson
,
D. G.
,
1996
, “
The Utilization of Recuperated and Regenerated Engine Cycles for High-Efficiency Gas Turbines in the 21st Century
,”
Appl. Therm. Eng.
,
16
(
8–9
), pp.
635
653
.10.1016/1359-4311(95)00078-X
26.
McDonald
,
C. F.
,
Massardo
,
A. F.
,
Rodgers
,
C.
, and
Stone
,
A.
,
2008
, “
Recuperated Gas Turbine Aeroengines, Part I: Early Development Activities
,”
Aircr. Eng. Aerosp. Technol.
,
80
(
2
), pp.
139
157
.10.1108/00022660810859364
27.
McDonald
,
C. F.
,
Massardo
,
A. F.
,
Rodgers
,
C.
, and
Stone
,
A.
,
2008
, “
Recuperated Gas Turbine Aeroengines, Part II: Engine Design Studies Following Early Development Testing
,”
Aircr. Eng. Aerosp. Technol.
,
80
(
3
), pp.
280
294
.10.1108/00022660810873719
28.
Jeong
,
J. H.
,
Kim
,
L. S.
,
Lee
,
J. K.
,
Ha
,
M. Y.
,
Kim
,
K. S.
, and
Ahn
,
Y. C.
,
2007
, “
Review of Heat Exchanger Studies for High-Efficiency Gas Turbines
,”
ASME
Paper No. GT2007-28071.10.1115/GT2007-28071
29.
Kesser
,
K. F.
,
Hoffman
,
M.
, and
Baughn
,
J.
,
1994
, “
Analysis of a Basic Chemically Recuperated Gas Turbine Power Plant
,”
ASME J. Eng. Gas Turbines Power
,
116
(
2
), pp.
277
284
.10.1115/1.2906817
30.
Abdallah
,
H.
, and
Harvey
,
S.
,
2001
, “
Thermodynamic Analysis of Chemically Recuperated Gas Turbines
,”
Int. J. Thermal Sci.
,
40
(
4
), pp.
372
384
.10.1016/S1290-0729(01)01225-X
31.
Boggia
,
S.
, and
Rüd
,
K.
,
2005
, “
Intercooled Recuperated Gas Turbine Engine Concept
,”
AIAA
Paper No. 2005-4192.10.2514/6.2005-4192
32.
Xiao
,
G.
,
Yang
,
T.
,
Liu
,
H.
,
Ni
,
D.
,
Ferrari
,
M. L.
,
Li
,
M.
,
Luo
,
Z.
,
Cen
,
K.
, and
Ni
,
M.
,
2017
, “
Recuperators for Micro Gas Turbines: A Review
,”
Appl. Energy
,
197
, pp.
83
99
.10.1016/j.apenergy.2017.03.095
33.
Kennedy
,
I.
,
Duda
,
T.
,
Liu
,
Z.
,
Ceen
,
B.
,
Jones
,
A.
, and
Copeland
,
C. D.
,
2019
, “
Investigation Into a Combined Inverted Brayton and Rankine Cycle
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121009
.10.1115/1.4045349
34.
De Paepe
,
W.
,
Pappa
,
A.
,
Coppitters
,
D.
,
Montero Carrero
,
M.
,
Tsirikoglou
,
P.
, and
Contino
,
F.
,
2021
, “
Recuperator Performance Assessment in Humidified Micro Gas Turbine Applications Using Experimental Data Extended With Preliminary Support Vector Regression Model Analysis
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071030
.10.1115/1.4049266
35.
Ferrari
,
M. L.
,
Pascenti
,
M.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2010
, “
Micro Gas Turbine Recuperator: Steady-State and Transient Experimental Investigation
,”
ASME J. Eng. Gas Turbines Power
,
132
(
2
), p.
022301
.10.1115/1.3156822
36.
Rovira
,
A.
,
Sánchez
,
C.
, and
Muñoz
,
M.
,
2015
, “
Analysis and Optimisation of Combined Cycles Gas Turbines Working With Partial Recuperation
,”
Energy Convers. Manage.
,
106
, pp.
1097
1108
.10.1016/j.enconman.2015.10.046
37.
Stathopoulos
,
P.
,
Rähse
,
T.
,
Vinkeloe
,
J.
, and
Djordjevic
,
N.
,
2020
, “
First Law Thermodynamic Analysis of the Recuperated Humphrey Cycle for Gas Turbines With Pressure Gain Combustion
,”
Energy
,
200
, p.
117492
.10.1016/j.energy.2020.117492
38.
Sayyaadi
,
H.
, and
Mehrabipour
,
R.
,
2012
, “
Efficiency Enhancement of a Gas Turbine Cycle Using an Optimized Tubular Recuperative Heat Exchanger
,”
Energy
,
38
(
1
), pp.
362
375
.10.1016/j.energy.2011.11.048
39.
Moon
,
S. W.
, and
Kim
,
T. S.
,
2021
, “
Simulation of Optimizing the Partial Load Performance of a Gas Turbine Combined Cycle Using Exhaust Heat Recuperation and Inlet Bleed Heating
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061005
.10.1115/1.4048845
40.
Palman
,
M.
,
Leizeronok
,
B.
, and
Cukurel
,
B.
,
2019
, “
Mission Analysis and Operational Optimization of Adaptive Cycle Microturbofan Engine in Surveillance and Firefighting Scenarios
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011010
.10.1115/1.4040734
41.
Oates
,
G. C.
,
1989
,
Aircraft Propulsion Systems Technology and Design
, AIAA Educational Series, Washington, DC.
42.
Hwang
,
G.
, and
Jeong
,
S.
,
2010
, “
Pressure Loss Effect on Recuperative Heat Exchanger and Its Thermal Performance
,”
Cryogenics.
,
50
(
1
), pp.
13
17
.10.1016/j.cryogenics.2009.10.002
43.
Mattingly
,
J. D.
, and
Boyer
,
K. M.
, and
2006
,
Elements of Propulsion: Gas Turbines and Rockets
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
44.
Benedict
,
R.
,
Wyler
,
J.
,
Dudek
,
J.
, and
Gleed
,
A.
,
1976
, “
Generalized Flow Across an Abrupt Enlargement
,”
ASME J. Eng. Power
,
98
(
3
), pp.
327
332
.10.1115/1.3446171
45.
Seddon
,
J.
,
1952
, “
Air Intakes for Aircraft Gas Turbines
,”
Aeronaut. J.
,
56
(
502
), pp.
747
781
.10.1017/S0368393100124940
46.
Farokhi
,
S.
,
2014
,
Aircraft Propulsion
,
Wiley
, Hoboken, NJ.
47.
Aungier
,
R. H.
,
2006
,
Turbine Aerodynamics
,
American Society of Mechanical Engineers Press
,
New York
.
48.
Shepherd
,
J. E.
, and
Kasahara
,
J.
,
2017
, “
Analytical Models for the Thrust of a Rotating Detonation Engine
,” GALCIT Report No. FM2017.
49.
Stathopoulos
,
P.
,
Rähse
,
T.
,
Vinkeloe
,
J.
, and
Djordjevic
,
N.
,
2019
, “
Steam Injected Humphrey Cycle for Gas Turbines With Pressure Gain Combustion
,”
Energy
,
188
, p.
116020
.10.1016/j.energy.2019.116020
50.
Chacon
,
F.
, and
Gamba
,
M.
,
2019
, “
Detonation Wave Dynamics in a Rotating Detonation Engine
,”
AIAA
Paper No. 2019-0198.10.2514/6.2019-0198
51.
Anand
,
V.
,
George
,
A. S.
,
de Luzan
,
C. F.
, and
Gutmark
,
E.
,
2018
, “
Rotating Detonation Wave Mechanics Through Ethylene-Air Mixtures in Hollow Combustors, and Implications to High Frequency Combustion Instabilities
,”
Exp. Therm. Fluid Sci.
,
92
, pp.
314
325
.10.1016/j.expthermflusci.2017.12.004
52.
Sousa
,
J.
,
Paniagua
,
G.
, and
Saavedra
,
J.
,
2017
, “
Aerodynamic Response of Internal Passages to Pulsating Inlet Supersonic Conditions
,”
Comput. Fluids
,
149
, pp.
31
40
.10.1016/j.compfluid.2017.03.005
53.
Bach
,
E.
,
Bohon
,
M. D.
,
Paschereit
,
C. O.
, and
Stathopoulos
,
P.
,
2019
, “
Impact of Outlet Restriction on RDC Performance and Stagnation Pressure Rise
,”
AIAA
Paper No. 2019-0476.10.2514/6.2019-0476
54.
Habicht
,
F.
,
Yücel
,
F. C.
,
Rezay Haghdoost
,
M.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2021
, “
Acoustic Modes in a Plenum Downstream of a Multitube Pulse Detonation Combustor
,”
AIAA J.
,
59
(
11
), pp.
4569
4580
.10.2514/1.J060416
55.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2020
, “
Thermal Power Plant Upgrade Via a Rotating Detonation Combustor and Retrofitted Turbine With Optimized Endwalls
,”
Int. J. Mech. Sci.
,
188
, p.
105918
.10.1016/j.ijmecsci.2020.105918
56.
Li
,
D.
, and
Groll
,
E. A.
,
2005
, “
Transcritical CO2 Refrigeration Cycle With Ejector-Expansion Device
,”
Int. J. Refrig.
,
28
(
5
), pp.
766
773
.10.1016/j.ijrefrig.2004.10.008
57.
Braun
,
J.
,
Paniagua
,
G.
, and
Ferguson
,
D.
,
2021
, “
Rotating Detonation Combustor Downstream Transition Passage Design Considerations
,”
Active Flow and Combustion Control Conference
, Springer, Cham, pp.
169
183
.10.1007/978-3-030-90727-3_11
58.
Bach
,
E.
,
Paschereit
,
C. O.
,
Stathopoulos
,
P.
, and
Bohon
,
M. D.
,
2021
, “
An Empirical Model for Stagnation Pressure Gain in Rotating Detonation Combustors
,”
Proc. Combust. Inst.
,
38
(
3
), pp.
3807
3814
.10.1016/j.proci.2020.07.071
59.
Sousa
,
J.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2017
, “
Development of a Fast Evaluation Tool for Rotating Detonation Combustors
,”
Appl. Math. Modell.
,
52
, pp.
42
52
.10.1016/j.apm.2017.07.019
60.
Lagerström
,
G.
, and
Xie
,
M.
,
2002
, “
High Performance and Cost Effective Recuperator for Micro-Gas Turbines
,”
ASME
Paper No. GT2002-30402.10.1115/GT2002-30402
61.
Utriainen
,
E.
, and
Sundé N
,
B.
,
2002
, “
Evaluation of the Cross Corrugated and Some Other Candidate Heat Transfer Surfaces for Microturbine Recuperators
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
550
560
.10.1115/1.1456093
62.
Rudinger
,
G.
,
1974
, “
Experimental Investigation of Gas Injection Through a Transverse Slot Into a Subsonic Cross Flow
,”
AIAA J.
,
12
(
4
), pp.
566
568
.10.2514/3.49291
63.
Hirota
,
M.
,
Mohri
,
E.
,
Asano
,
H.
, and
Goto
,
H.
,
2010
, “
Experimental Study on Turbulent Mixing Process in Cross-Flow Type T-Junction
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
776
784
.10.1016/j.ijheatfluidflow.2010.04.006
64.
Cohen
,
L. S.
,
Coulter
,
L. J.
, and
Egan
,
W. J.
, Jr
,
1971
, “
Penetration and Mixing of Multiple Gas Jets Subjected to a Cross Flow
,”
AIAA J.
,
9
(
4
), pp.
718
724
.10.2514/3.6253
65.
Holdeman
,
J.
,
Srinivasan
,
R.
, and
Berenfeld
,
A.
,
1984
, “
Experiments in Dilution Jet Mixing
,”
AIAA J.
,
22
(
10
), pp.
1436
1443
.10.2514/3.48582
66.
Wegner
,
B.
,
Huai
,
Y.
, and
Sadiki
,
A.
,
2004
, “
Comparative Study of Turbulent Mixing in Jet in Cross-Flow Configurations Using LES
,”
Int. J. Heat Fluid Flow
,
25
(
5
), pp.
767
775
.10.1016/j.ijheatfluidflow.2004.05.015
67.
Ito
,
H.
,
1960
, “
Pressure Losses in Smooth Pipe Bends
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
131
140
.10.1115/1.3662501
68.
Schittkowski
,
K.
,
1982
, “
The Nonlinear Programming Method of Wilson, Han, and Powell With an Augmented Lagrangian Type Line Search Function
,”
Numerische Math.
,
38
(
1
), pp.
83
114
.10.1007/BF01395810
69.
Lasdon
,
L. S.
,
Fox
,
R. L.
, and
Ratner
,
M. W.
,
1974
, “
Nonlinear Optimization Using the Generalized Reduced Gradient Method
,”
Revue Française D'automatique, Informatique, Recherche Opérationnelle. Recherche Opérationnelle
,
8
(
V3
), pp.
73
103
.10.1051/ro/197408V300731
70.
El-Sayed
,
A. F.
,
2016
,
Fundamentals of Aircraft and Rocket Propulsion
,
Springer
, London, UK.
71.
Kurzke
,
J.
,
2005
, “
How to Create a Performance Model of a Gas Turbine From a Limited Amount of Information
,”
ASME
Paper No. GT2005-68536.10.1115/GT2005-68536
72.
Kurzke
,
J.
, and
Halliwell
,
I.
,
2018
,
Propulsion and Power: An Exploration of Gas Turbine Performance Modeling
,
Springer
, London, UK.
73.
Meier
,
N.
,
2023
, “Civil Turbojet/Turbofan Specifications,” accessed Feb. 21, 2023, https://www.jet-engine.net/civtfspec.htm
74.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Thermal Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
You do not currently have access to this content.