Abstract

Operating under harsh conditions and exposed to fluctuating loads for extended periods, wind turbines experience a heightened vulnerability in their key components. Early fault detection is crucial to enhance the reliability of wind turbines, minimize downtime, and optimize power generation efficiency. Although deep learning techniques have been widely applied to fault diagnosis tasks, yielding remarkable performance, practical implementations frequently confront the obstacle of acquiring a substantial quantity of labeled data to train an effective deep learning model. Consequently, this paper introduces an unsupervised global and local domain adaptation network (GLDAN) for fault diagnosis across wind turbines, enabling the model to efficiently transfer acquired knowledge to the target domain in the absence of labeled data. This feature renders it an appropriate solution for situations with limited labeled data availability. Employing adversarial training, GLDAN aligns global domain distributions, diminishing the overall discrepancy between source and target domains, and local domain distributions within a single fault category for both domains, capturing more intricate and specific fault features. The proposed approach is corroborated using actual wind farm data, and comprehensive experimental results demonstrate that GLDAN surpasses deep global domain adaptation methods in cross-wind turbine fault diagnosis, underlining its practical value in the field.

References

1.
Li
,
Y.
,
Liu
,
S.
, and
Shu
,
L.
,
2019
, “
Wind Turbine Fault Diagnosis Based on Gaussian Process Classifiers Applied to Operational Data
,”
Renew. Energy
,
134
, pp.
357
366
.10.1016/j.renene.2018.10.088
2.
Yang
,
H. H.
,
Huang
,
M. L.
,
Lai
,
C. M.
, and
Jin
,
J. R.
,
2018
, “
An Approach Combining Data Mining and Control Charts-Based Model for Fault Detection in Wind Turbines
,”
Renew. Energy
,
115
, pp.
808
816
.10.1016/j.renene.2017.09.003
3.
Helbing
,
G.
, and
Ritter
,
M.
,
2018
, “
Deep Learning for Fault Detection in Wind Turbines
,”
Renew. Sustain. Energy Rev.
,
98
(
January
), pp.
189
198
.10.1016/j.rser.2018.09.012
4.
Waqas Khan
,
P.
, and
Byun
,
Y. C.
,
2022
, “
Multi-Fault Detection and Classification of Wind Turbines Using Stacking Classifier
,”
Sensors
,
22
(
18
), p.
6955
.10.3390/s22186955
5.
Voulodimos
,
A.
,
Doulamis
,
N.
,
Doulamis
,
A.
, and
Protopapadakis
,
E.
,
2018
, “
Deep Learning for Computer Vision: A Brief Review
,”
Comput. Intell. Neurosci.
,
2018
, pp.
1
13
.10.1155/2018/7068349
6.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
, “
Deep Residual Learning for Image Recognition
,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (
CVPR
), Las Vegas, NV, June 27–30, pp.
770
778
.10.1109/CVP R.2016.90
7.
Young
,
T.
,
Hazarika
,
D.
,
Poria
,
S.
, and
Cambria
,
E.
,
2018
, “
Recent Trends in Deep Learning Based Natural Language Processing [Review Article]; Recent Trends in Deep Learning Based Natural Language Processing [Review Article]
,”
IEEE Comput. Intell. Mag.
,
13
(
3
), pp.
55
75
.10.1109/MCI.2018.2840738
8.
Sadoughi
,
M.
, and
Hu
,
C.
,
2019
, “
Physics-Based Convolutional Neural Network for Fault Diagnosis of Rolling Element Bearings
,”
IEEE Sens. J.
,
19
(
11
), pp.
4181
4192
.10.1109/JSEN.2019.2898634
9.
Wang
,
H.
,
Liu
,
Z.
,
Peng
,
D.
, and
Qin
,
Y.
,
2020
, “
Understanding and Learning Discriminant Features Based on Multiattention 1DCNN for Wheelset Bearing Fault Diagnosis
,”
IEEE Trans. Ind. Inform.
,
16
(
9
), pp.
5735
5745
.10.1109/TII.2019.2955540
10.
Liu
,
C.
, and
Gryllias
,
K.
,
2020
, “
A Semi-Supervised Support Vector Data Description-Based Fault Detection Method for Rolling Element Bearings Based on Cyclic Spectral Analysis
,”
Mech. Syst. Signal Process
,
140
, p.
106682
.10.1016/j.ymssp.2020.106682
11.
Shao
,
H.
,
Jiang
,
H.
,
Zhang
,
H.
,
Duan
,
W.
,
Liang
,
T.
, and
Wu
,
S.
,
2018
, “
Rolling Bearing Fault Feature Learning Using Improved Convolutional Deep Belief Network With Compressed Sensing
,”
Mech. Syst. Signal Process.
,
100
, pp.
743
765
.10.1016/j.ymssp.2017.08.002
12.
Liang
,
K.
,
Qin
,
N.
,
Huang
,
D.
,
Fu
,
Y.
, and
Hu
,
L.
,
2018
, “
Convolutional Recurrent Neural Network for Fault Diagnosis of High-Speed Train Bogie
,”
Complexity
,
2018
, pp.
1
13
.10.1155/2018/4501952
13.
Lei
,
J.
,
Liu
,
C.
, and
Jiang
,
D.
,
2019
, “
Fault Diagnosis of Wind Turbine Based on Long Short-Term Memory Networks
,”
Renew. Energy
,
133
, pp.
422
432
.10.1016/j.renene.2018.10.031
14.
Zhao
,
H.
,
Liu
,
H.
,
Hu
,
W.
, and
Yan
,
X.
,
2018
, “
Anomaly Detection and Fault Analysis of Wind Turbine Components Based on Deep Learning Network
,”
Renew. Energy
,
127
, pp.
825
834
.10.1016/j.renene.2018.05.024
15.
Xu
,
Y.
,
Yan
,
X.
,
Sun
,
B.
, and
Liu
,
Z.
,
2022
, “
Hierarchical Multiscale Dense Networks for Intelligent Fault Diagnosis of Electromechanical Systems; Hierarchical Multiscale Dense Networks for Intelligent Fault Diagnosis of Electromechanical Systems
,”
IEEE Trans. Instrum. Meas.
,
71
, pp.
1
12
.10.1109/TIM.2022.3150872
16.
Wang
,
H.
,
Liu
,
Z.
,
Peng
,
D.
, and
Cheng
,
Z.
,
2022
, “
Attention-Guided Joint Learning CNN With Noise Robustness for Bearing Fault Diagnosis and Vibration Signal Denoising
,”
ISA Trans
,
128
, pp.
470
484
.10.1016/j.isatra.2021.11.028
17.
Pang
,
Y.
,
He
,
Q.
,
Jiang
,
G.
, and
Xie
,
P.
,
2020
, “
Spatio-Temporal Fusion Neural Network for Multi-Class Fault Diagnosis of Wind Turbines Based on SCADA Data
,”
Renew. Energy
,
161
, pp.
510
524
.10.1016/j.renene.2020.06.154
18.
Wang
,
H.
,
Liu
,
Z.
,
Peng
,
D.
,
Yang
,
M.
, and
Qin
,
Y.
,
2022
, “
Feature-Level Attention-Guided Multitask CNN for Fault Diagnosis and Working Conditions Identification of Rolling Bearing; Feature-Level Attention-Guided Multitask CNN for Fault Diagnosis and Working Conditions Identification of Rolling Bearing
,”
IEEE Trans. Neural Networks Learn. Syst.
,
33
(
9
), pp.
4757
4769
.10.1109/T NNLS.2021.3060494
19.
Csurka
,
G.
,
2017
, “
A Comprehensive Survey on Domain Adaptation for Visual Applications
,” G. Csurka, ed.,
Domain Adaptation in Computer Vision Applications, Advances in Computer Vision and Pattern Recognition
, Springer, Cham.10.1007/978-3-319-58347-1_1
20.
Ganin
,
Y.
, and
Lempitsky
,
V.
,
2015
, “
Unsupervised Domain Adaptation by Backpropagation
,”
Proceedings of the 32nd International Conference on Machine Learning
, Proceedings of Machine Learning Research, Lille, France, July 6–11, Vol.
37
, pp.
1180
1189
.https://proceedings.mlr.press/v37/ganin15.html
21.
Singh Rathore
,
M.
, and
Harsha
,
S. P.
,
2022
, “
Rolling Bearing Prognostic Analysis for Domain Adaptation Under Different Operating Conditions
,”
Eng. Failure Anal.
,
139
(
March
), p.
106414
.10.1016/j.engfailanal.2022.106414
22.
Peng
,
D.
,
Liu
,
C.
,
Desmet
,
W.
, and
Gryllias
,
K.
,
2021
, “
Deep Unsupervised Transfer Learning for Health Status Prediction of a Fleet of Wind Turbines With Unbalanced Data
,”
Annual Conference of the Prognostics and Health Management Society
,
13
(
1
).10.36001/phmconf.2021.v13i1.3069
23.
Ganin
,
Y.
,
Ustinova
,
E.
,
Ajakan
,
H.
,
Germain
,
P.
,
Larochelle
,
H.
,
Laviolette
,
F.
,
Marchand
,
M.
, and
Lempitsky
,
V.
,
2017
, “
Domain-Adversarial Training of Neural Networks
,”
Domain Adaptation in Computer Vision Applications, Advances in Computer Vision and Pattern Recognition
, Csurka, G., ed., Springer, Cham, pp.
189
209
.10.1007/978-3-319-58347-1_10
24.
Nair
,
V.
, and
Hinton
,
G. E.
,
2010
, “
Rectified Linear Units Improve Restricted Boltzmann Machines
,” Proceedings of the 27th International Conference on International Conference on Machine Learning (
ICML'10
), Haifa, Israel, June 21–24, pp.
807
814
.https://www.cs.toronto.edu/~fritz/absps/reluICML.pdf
25.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,” arXiv Prepr.
arXiv1412.6980
.https://arxiv.org/pdf/1412.6980.pdf
26.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2020
, “
Generative Adversarial Networks
,”
Commun. ACM
,
63
(
11
), pp.
139
144
.10.1145/3422622
27.
Ganin
,
Y.
,
Ustinova
,
E.
,
Ajakan
,
H.
,
Germain
,
P.
,
Larochelle
,
H.
,
Laviolette
,
F.
,
Marchand
,
M.
, and
Lempitsky
,
V.
,
2016
, “
Domain-Adversarial Training of Neural Networks
,”
J. Mach. Learn. Res
,
17
(
1
), pp.
2030
2096
.https://jmlr.org/papers/volume17/15-239/15-239.pdf
28.
Yu
,
C.
,
Wang
,
J.
,
Chen
,
Y.
, and
Huang
,
M.
,
2019
, “
Transfer Learning With Dynamic Adversarial Adaptation Network
,” Proceedings of IEEE International Conference on Data Mining (
ICDM
), Beijing, China, Nov. 8–11, Vol. 2019, pp.
778
786
.10.1109/ICDM.2019.00088
29.
Hong
,
X.
,
Zheng
,
Q.
,
Liu
,
L.
,
Chen
,
P.
,
Ma
,
K.
,
Gao
,
Z.
, and
Zheng
,
Y.
,
2021
, “
Dynamic Joint Domain Adaptation Network for Motor Imagery Classification
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
29
, pp.
556
565
.10.1109/TNSRE.2021.3059166
30.
Chicco
,
D.
, and
Jurman
,
G.
,
2020
, “
The Advantages of the Matthews Correlation Coefficient (MCC) Over F1 Score and Accuracy in Binary Classification Evaluation
,”
BMC Genom.
,
21
(
1
), pp.
1
13
.10.1186/s12864-019-6413-7
31.
Long
,
M.
,
Cao
,
Y.
,
Wang
,
J.
, and
Jordan
,
M. I.
,
2015
, “
Learning Transferable Features With Deep Adaptation Networks
,” International Conference on Machine Learning (
ICML
), 37, pp.
97
105
.https://proceedings.mlr.press/v37/long15.html
32.
Sun
,
B.
, and
Saenko
,
K.
, “
2016
, “
Deep Coral: Correlation Alignment for Deep Domain Adaptation
,”
Computer Vision – ECCV 2016 Workshops, ECCV 2016
, Lecture Notes in Computer Science, G. Hua, and H. Jégou, eds., Vol. 9915, Springer, Cham, pp.
443
450
.10.1007/978-3-319-49409-8_35
33.
Zhu
,
Y.
,
Zhuang
,
F.
,
Wang
,
J.
,
Ke
,
G.
,
Chen
,
J.
,
Bian
,
J.
,
Xiong
,
H.
, and
He
,
Q.
,
2021
, “
Deep Subdomain Adaptation Network for Image Classification
,”
IEEE Trans. Neural Netw. Lear. Syst.
,
32
(
4
), pp.
1713
1722
.10.1109/TNNLS.2020.2988928
You do not currently have access to this content.