Abstract

This study aims to verify the effectiveness of the 250 HP class compressor system to which the integrated hybrid air-foil magnetic thrust bearing (i-HFMTB) proposed in (Ha et al., 2023, “Integrated Hybrid Air Foil-Magnetic Thrust Bearing (i-HFMTB) Part I: Preliminary Experimental Test for Rotordynamic Parameter Identification and Behavior With PD Control,” ASME Paper No. GT2023-102860) [1] is applied, and the vibration and instability problems of air-foil journal bearing (AFJB) occurring in the rigid mode are controlled by i-HFMTB. The compressor rotor is supported by two AFJB (journal diameter = 60 mm) and an i-HFMTB, and the length and mass of the rotor are 550 mm and 15.24 kg, respectively. i-HFMTB has a structure in which air-foil thrust bearing (AFTB) pads are inserted into eight slotted active magnetic thrust bearings (AMTB), and PD control (proportional gain: 4000; differential gain: 10) is applied. The operating area was identified through AFJB’s dynamic coefficients and rotordynamic analysis. As a result, in the experiment with the 250 HP compressor system supported only by two AFJB, sub- and super-synchronous vibrations were generated owing to the AFJB’s insufficient load capacity and damping in the rigid mode (7000 rpm) region, and this instability did not disappear even upon increasing the speed to 15,000 rpm. However, when i-HFMTB was turned on in rigid mode, it was confirmed that the sub- and super-synchronous vibrations were significantly reduced. The thrust collar tilt angle was calculated through orbit trajectory analysis of the impeller and cooling side, and it was confirmed that the tilt angle of the thrust collar was reduced during i-HFMTB operation.

References

1.
Ha
,
Y. S.
,
Kim
,
J.
, and
Lee
,
Y.
,
2023
, “
Integrated Hybrid Air Foil-Magnetic Thrust Bearing (i-HFMTB) Part I: Preliminary Experimental Test for Rotordynamic Parameter Identification and Behavior With PD Control
,”
ASME
Paper No. GT2023-102860.10.1115/GT2023-102860
2.
Agrawal
,
G. L.
,
1997
, “
Foil Air/Gas Bearing Technology—An Overview
,”
ASME
Paper No. 97-GT-347. 10.1115/97-GT-347
3.
Kim
,
K.-S.
, and
Lee
,
I.
,
2007
, “
Vibration Characteristics of a 75 kW Turbo Machine With Air Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
843
849
.10.1115/1.2718220
4.
Kim
,
T. H.
,
Lee
,
Y.-B.
,
Kim
,
T. Y.
, and
Jeong
,
K. H.
,
2012
, “
Rotordynamic Performance of an Oil-Free Turbo Blower Focusing on Load Capacity of Gas Foil Thrust Bearings
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
022501
.10.1115/1.4004143
5.
Choe
,
B. S.
,
Kim
,
T. H.
,
Kim
,
C. H.
, and
Lee
,
Y. B.
,
2015
, “
Rotordynamic Behavior of 225 kW (300 HP) Class PMS Motor–Generator System Supported by Gas Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
092505
.10.1115/1.4029712
6.
Liu
,
Q.
,
Zhang
,
S.
,
Li
,
Y.
,
Lei
,
G.
, and
Wang
,
L.
,
2021
, “
Hybrid Gas-Magnetic Bearings: An Overview
,”
Int. J. Appl. Electromagn. Mech.
,
66
(
2
), pp.
313
338
.10.3233/JAE-201579
7.
Bloch
,
H. P.
,
2006
,
A Practical Guide to Compressor Technology
,
Wiley
, Hoboken, NJ.
8.
Bleuler
,
H.
, and
Cole
,
M.
,
2009
,
Magnetic Bearings: Theory, Design, and Application to Rotating Machinery
,
Springer Science & Business Media
, Berlin.
9.
Uzhegov
,
N.
,
Smirnov
,
A.
,
Park
,
C. H.
,
Ahn
,
J. H.
,
Heikkinen
,
J.
, and
Pyrhonen
,
J.
,
2017
, “
Design Aspects of High-Speed Electrical Machines With Active Magnetic Bearings for Compressor Applications
,”
IEEE Trans. Ind. Electron.
,
64
(
11
), pp.
8427
8436
.10.1109/TIE.2017.2698408
10.
Park
,
C. H.
,
Choi
,
S. K.
, and
Ham
,
S. Y.
,
2014
, “
Design of Magnetic Bearings for Turbo Refrigerant Compressors
,”
Mech. Ind.
,
15
(
4
), pp.
245
252
.10.1051/meca/2014032
11.
Park
,
C. H.
,
Park
,
J. Y.
, and
Yoon
,
E. S.
, “
Design and Evaluation of Hybrid Magnetic Bearings for Turbo Compressors
,”
ASME
Paper No. GT2018-75273. 10.1115/GT2018-75273
12.
Jeong
,
S.
,
Jeon
,
D.
, and
Lee
,
Y. B.
,
2017
, “
Rigid Mode Vibration Control and Dynamic Behavior of Hybrid Foil–Magnetic Bearing Turbo Blower
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052501
.10.1115/1.4034920
13.
Lee
,
Y. B.
,
Kim
,
C. H.
,
Kim
,
S. J.
,
Lee
,
S. H.
, and
Kim
,
H. S.
,
2010
, “
Airfoil Magnetic Hybrid Bearing and a Control System Thereof
,” U.S. Patent No. US8772992 B2.
14.
Hawkins
,
L.
,
Filatov
,
A.
,
Khatri
,
R.
,
DellaCorte
,
C.
, and
Howard
,
S. A.
,
2021
, “
Design of a Compact Magnetically Levitated Blower for Space Applications
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091012
.10.1115/1.4050755
15.
Martynenko
,
G.
, and
Martynenko
,
V.
,
2020
, “
Modeling of the Dynamics of Rotors of an Energy Gas Turbine Installation Using an Analytical Method for Analyzing Active Magnetic Bearing Circuits
,” 2020 IEEE KhPI Week on Advanced Technology (
KhPIWeek
), Kharkiv, Ukraine, Oct. 5–10, pp. 92–97
.10.1109/KhPIWeek51551.2020.9250156
16.
Falkowski
,
K.
,
Kurnyta-Mazurek
,
P.
,
Szolc
,
T.
, and
Henzel
,
M.
,
2022
, “
Radial Magnetic Bearings for Rotor–Shaft Support in Electric Jet Engine
,”
Energies
,
15
(
9
), p.
3339
.10.3390/en15093339
17.
Yoon
,
S. Y.
,
Lin
,
Z.
,
Lim
,
K. T.
,
Goyne
,
C.
, and
Allaire
,
P. E.
,
2010
, “
Model Validation for an Active Magnetic Bearing Based Compressor Surge Control Test Rig
,”
ASME J. Vib. Acoust.
,
132
(
6
), p.
061005
.10.1115/1.4001845
18.
Lin
,
Y.
,
Bai
,
G.
,
Huang
,
Y.
,
Zhou
,
J.
,
Guan
,
X.
, and
Dong
,
J.
,
2022
, “
Investigation on Broadening Compressor Surge Margin by Using Active Magnetic Bearing
,”
Shock Vib.
,
2022
, pp.
1
13
.10.1155/2022/1139648
19.
Eaton
,
D.
,
Rama
,
J.
, and
Singhal
,
S.
,
2010
, “
Magnetic Bearing Applications & Economics
,” 2010 Record of Conference Papers Industry Applications Society 57th Annual Petroleum and Chemical Industry Conference (
PCIC
), San Antonio, TX, Sept. 20–22, pp. 1–9
.10.1109/PCIC.2010.5666819
20.
Wang
,
K.
,
Ma
,
X.
,
Liu
,
Q.
,
Chen
,
S.
, and
Liu
,
X.
,
2019
, “
Multiphysics Global Design and Experiment of the Electric Machine With a Flexible Rotor Supported by Active Magnetic Bearing
,”
IEEE/ASME Trans. Mechatron.
,
24
(
2
), pp.
820
831
.10.1109/TMECH.2019.2892392
21.
Lee
,
Y.-B.
,
Park
,
D.-J.
,
Kim
,
C.-H.
, and
Kim
,
S.-J.
,
2008
, “
Operating Characteristics of the Bump Foil Journal Bearings With Top Foil Bending Phenomenon and Correlation Among Bump Foils
,”
Tribol. Int.
,
41
(
4
), pp.
221
233
.10.1016/j.triboint.2007.07.003
22.
Kim
,
T. H.
, and
San Andrés
,
L.
,
2008
, “
Heavily Loaded Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
012504
.10.1115/1.2770494
23.
Lee
,
Y.-B.
,
Park
,
D.-J.
,
Kim
,
C.-H.
, and
Ryu
,
K.
,
2007
, “
Rotordynamic Characteristics of a Micro Turbo Generator Supported by Air Foil Bearings
,”
J. Micromech. Microeng.
,
17
(
2
), pp.
297
303
.10.1088/0960-1317/17/2/016
24.
RAPPIDTM Software
,
2015
, “
Rotordynamics-Seal Research
,” Penryn, CA, accessed Feb. 27, 2016, https://www.rda.guru/software-rotordynamics.php
25.
Zhang
,
G.
,
Chen
,
L-Q.
,
Yu
,
L.
, and
Xie
,
Y-B.
,
2000
, “
Mechanical Characteristics of a Thrust Magnetic Bearing
,”
J. Shanghai Univ. (English Ed.)
,
4
(
4
), pp.
314
318
.10.1007/s11741-000-0049-2
You do not currently have access to this content.