Abstract

The BIMER combustor is a lab-scale burner investigating fuel staging techniques as a stabilization strategy for lean premixed prevaporized combustion for aeronautical applications. Two stages compose its injection system: the pilot and the multipoint stages. The staging factor is defined as the ratio of fuel mass flowrate injected through the pilot stage over the total one. As three flame shapes were found experimentally, Large-Eddy Simulations are performed in this study to assess the impact of the flame shape on the combustion regime and stability of the burner. Two operating conditions were explored experimentally (pilot-only and multipoint-dominated) to validate the simulations and compare the three flames. An additional multipoint-only condition is also investigated for the V flame. The combustion regimes (premixed and non-premixed) and noise signatures (as a function of fuel staging) were compared to check whether these flames could benefit from the staging strategy. The M and Tulip flame combustion regimes are little affected by fuel staging, remaining mostly premixed and non-premixed, respectively, regardless of fuel staging. In opposition, the V flame changes from being mostly non-premixed to completely premixed when the injection is changed from pilot-only to multipoint-only. For the same staging factor values, the V flame also emits less noise compared to the other two flame shapes. These results show that the V flame shape is the only one that allows this burner to benefit from an efficient fuel staging strategy.

References

1.
Ducruix
,
S.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms
,”
J. Propul. Power
,
19
(
5
), pp.
722
734
.10.2514/2.6182
2.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
,
Cambridge, UK
.
3.
Billant
,
P.
,
Chomaz
,
J.
, and
Huerre
,
P.
,
1998
, “
Experimental Study of Vortex Breakdown in Swirling Jets
,”
J. Fluid Mech.
,
376
, pp.
183
219
.10.1017/S0022112098002870
4.
Lucca-Negro
,
O.
, and
O'Doherty
,
T.
,
2001
, “
Vortex Breakdown: A Review
,”
Prog. Energy Comb. Sci
,
27
(
4
), pp.
431
481
.10.1016/S0360-1285(00)00022-8
5.
Sarpkaya
,
T.
,
1971
, “
On Stationary and Travelling Vortex Breakdowns
,”
J. Fluid Mech.
,
45
(
3
), pp.
545
559
.10.1017/S0022112071000181
6.
Santhosh
,
R.
,
Miglani
,
A.
, and
Basu
,
S.
,
2014
, “
Transition in Vortex Breakdown Modes in a Coaxial Isothermal Unconfined Swirling Jet
,”
Phys. Fluids
,
26
(
4
), p.
043601
.10.1063/1.4870016
7.
Rajamanickam
,
K.
, and
Basu
,
S.
,
2018
, “
Insights Into the Dynamics of Conical Breakdown Modes in Coaxial Swirling Flow Field
,”
J. Fluid Mech.
,
853
, pp.
72
110.
10.1017/jfm.2018.549
8.
Han
,
X.
,
Laera
,
D.
,
Morgans
,
A. S.
,
Lin
,
Y.
, and
Sung
,
C.
,
2018
, “
The Effect of Stratification Ratio on the Macrostructure of Stratified Swirl Flames: Experimental and Numerical Study
,”
ASME J. Eng. Gas Turb. Power
,
140
(
12
), p.
121004
.10.1115/1.4040735
9.
Han
,
X.
,
Laera
,
D.
,
Morgans
,
A. S.
,
Sung
,
C. J.
,
Hui
,
X.
, and
Lin
,
Y. Z.
,
2019
, “
Flame Macrostructures and Thermoacoustic Instabilities in Stratified Swirling Flames
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5377
5384
.10.1016/j.proci.2018.06.147
10.
Taamallah
,
S.
,
Dagan
,
Y.
,
Chakroun
,
N.
,
Shanbhogue
,
S. J.
,
Vogiatzaki
,
K.
, and
Ghoniem
,
A. F.
,
2019
, “
Helical Vortex Core Dynamics and Flame Interaction in Turbulent Premixed Swirl Combustion: A Combined Experimental and Large Eddy Simulation Investigation
,”
Phys. Fluids
,
31
(
2
), p.
025108
.10.1063/1.5065508
11.
Chterev
,
I.
,
Foley
,
C. W.
,
Foti
,
D.
,
Kostka
,
S.
,
Caswell
,
A. W.
,
Jiang
,
N.
,
Lynch
,
A.
,
Noble
,
D. R.
,
Menon
,
S.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T. C.
,
2014
, “
Flame and Flow Topologies in an Annular Swirling Flow
,”
Combust. Sci. Technol.
,
186
(
8
), pp.
1041
1074
.10.1080/00102202.2014.882916
12.
Malbois
,
P.
,
Salaun
,
E.
,
Frindt
,
F.
,
Cabot
,
G.
,
Renou
,
B.
,
Grisch
,
F.
,
Bouheraoua
,
L.
,
Verdier
,
H.
, and
Richard
,
S.
, “
Experimental Investigation With Optical Diagnostics of a Lean-Premixed Aero-Engine Injection System Under Relevant Operating Conditions
,”
ASME
Paper No. GT2017-64484.10.1115/GT2017-64484
13.
Langella
,
I.
,
Heinze
,
J.
,
Behrendt
,
T.
,
Voigt
,
L.
,
Swaminathan
,
N.
, and
Zedda
,
M.
,
2020
, “
Turbulent Flame Shape Switching at Conditions Relevant for Gas Turbines
,”
ASME J. Eng. Gas Turb. Power
,
142
, p.
011026
.10.1115/1.4044944
14.
Soli
,
A.
, and
Langella
,
I.
,
2023
, “
Numerical Investigation of a Coupled Blow-Off/Flashback Process in a High-Pressure Lean-Burn Combustor
,”
ASME J. Eng. Gas Turb. Power
,
145
(
2
), p.
4055483
.
15.
Cheneau
,
B.
,
Vié
,
A.
, and
Ducruix
,
S.
,
2019
, “
Characterization of the Hysteresis Cycle in a Two-Stage Liquid-Fueled Swirled Burner Through Numerical Simulation
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5245
5253
.10.1016/j.proci.2018.06.157
16.
Mesquita
,
L. C. C.
,
Vié
,
A.
, and
Ducruix
,
S.
,
2020
, “
LES of the Ignition of a Two-Phase Staged Swirling Burner: Influence of Ignition Location and Operating Conditions on the Flame Shape
,”
ASME
Paper No. GT2020-15227.10.1115/GT2020-15227
17.
Mesquita
,
L. C.
,
Vié
,
A.
, and
Ducruix
,
S.
,
2022
, “
Flashback-Induced Flame Shape Transition in a Two-Stage LPP Aeronautical Combustor
,”
Proc. Combust. Inst.
, 39(4), pp.
4781
4790
.10.1016/j.proci.2022.08.028
18.
Cheneau
,
B.
,
Vié
,
A.
, and
Ducruix
,
S.
,
2019
, “
Numerical Study of Flame Shapes and Structures in a Two-Stage Two-Injection Aeronautical Burner With Variable Fuel Staging Using Eulerian Large Eddy Simulations
,”
ASME J. Eng. Gas Turb. Power
,
141
(
7
), p.
071014
.10.1115/1.4042205
19.
Mesquita
,
L.
,
2021
, “
Simulation and Analysis of the Shape, Performance and Stability of Flames in a Two-Stage Lean-Burn Aeronautical Combustor
,”
Ph.D. thesis
,
Université Paris-Saclay, CentraleSupélec, EM2C
,
Gif-sur-Yvette, France
.https://www.theses.fr/2021UPAST100
20.
Gicquel
,
L.
,
Staffelbach
,
G.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulations of Gaseous Flames in Gas Turbine Combustion Chambers
,”
Prog. Energy Comb. Sci.
, 38(6), pp.
782
817
.10.1016/j.pecs.2012.04.004
21.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turb. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
22.
Colin
,
O.
, and
Rudgyard
,
M.
,
2000
, “
Development of High-Order Taylor-Galerkin Schemes for LES
,”
J. Comput. Phys
,
162
(
2
), pp.
338
371
.10.1006/jcph.2000.6538
23.
Poinsot
,
T.
, and
Lele
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
24.
Poinsot
,
P.
, and
Veynante
,
D.
,
2012
,
Theoretical and Numerical Combustion
, 3rd ed.,
CERFACS
,
Toulouse, France
.
25.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion Part II: Dynamic Formulation
,”
Combust. Flame
,
131
(
1–2
), pp.
181
197
.10.1016/S0010-2180(02)00401-7
26.
Mesquita
,
L. C. C.
,
Vié
,
A.
, and
Ducruix
,
S.
,
2018
, “
Large Eddy Simulations of a Two-Phase Staged Swirling Burner Using an Euler-Lagrange Approach: Validation of the Injection Strategy
,”
ASME
Paper No. GT2018-76125.10.1115/GT2018-76125
27.
Franzelli
,
B.
,
Riber
,
E.
,
Sanjosé
,
M.
, and
Poinsot
,
T.
,
2010
, “
A Two-Step Chemical Scheme for Kerosene–Air Premixed Flames
,”
Combust. Flame
,
157
(
7
), pp.
1364
1373
.10.1016/j.combustflame.2010.03.014
28.
Cheneau
,
B.
,
Vié
,
A.
, and
Ducruix
,
S.
,
2015
, “
Large Eddy Simulations of a Liquid Fuel Swirl Burner: Flame Characterization for Pilot and Multipoint Injection Strategies
,”
ASME
Paper No. GT2015-42821.10.1115/GT2015-42821
29.
Paulhiac
,
D.
,
Cuenot
,
B.
,
Riber
,
E.
,
Esclapez
,
L.
, and
Richard
,
S.
,
2020
, “
Analysis of the Spray Flame Structure in a Lab-Scale Burner Using Large Eddy Simulation and Discrete Particle Simulation
,”
Combust. Flame
,
212
, pp.
25
38
.10.1016/j.combustflame.2019.10.013
30.
Abramzon
,
B.
, and
Sirignano
,
W.
,
1989
, “
Droplet Vaporization Model for Spray Combustion Calculations
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1605
1618
.10.1016/0017-9310(89)90043-4
31.
Renaud
,
A.
,
2015
, “
High-Speed Diagnostics for the Study of Flame Stabilization and Transient Behaviour in a Swirled Burner With Variable Liquid-Fuel Distribution
,”
Ph.D. thesis
,
CentraleSupélec
, Chatenay-Malabry.https://theses.hal.science/tel-01261655v1
32.
Lefebvre
,
A.
, and
Ballal
,
D.
,
2010
,
Gas Turbine Combustion
, 3rd ed.,
Taylor and Francis
,
Philadelphia, PA
.
33.
Caux-Brisebois
,
V.
,
Steinberg
,
A.
,
Arndt
,
C. M.
, and
Meier
,
W.
,
2014
, “
Thermo-Acoustic Velocity Coupling in a Swirl Stabilized Gas Turbine Model Combustor
,”
Combust. Flame
,
161
(
12
), pp.
3166
3180
.10.1016/j.combustflame.2014.05.020
34.
Steinberg
,
A. M.
,
Boxx
,
I.
,
Stöhr
,
M.
,
Meier
,
W.
, and
Carter
,
C. D.
,
2012
, “
Effects of Flow Structure Dynamics on Thermoacoustic Instabilities in Swirl-Stabilized Combustion
,”
AIAA J.
,
50
(
4
), pp.
952
967
.10.2514/1.J051466
35.
Steinberg
,
A. M.
,
Boxx
,
I.
,
Stöhr
,
M.
,
Carter
,
C. D.
, and
Meier
,
W.
,
2010
, “
Flow-Flame Interactions Causing Acoustically Coupled Heat Release Fluctuations in a Thermo-Acoustically Unstable Gas Turbine Model Combustor
,”
Combust. Flame
,
157
(
12
), pp.
2250
2266
.10.1016/j.combustflame.2010.07.011
36.
Mesquita
,
L. C.
,
Vié
,
A.
,
Zimmer
,
L.
, and
Ducruix
,
S.
,
2021
, “
Numerical Analysis of Flame Shape Bifurcation in a Two-Stage Swirled Liquid Burner Using Large Eddy Simulation
,”
Proc. Combust. Inst
,
38
(
4
), pp.
5971
5978
.10.1016/j.proci.2020.06.044
You do not currently have access to this content.