Abstract

This study experimentally and computationally investigates the heat transfer capability of supercritical carbon dioxide (sCO2) single jet impingement. The evaluated jet Reynolds number range is between 80,000 and 600,000, with a nondimensional jet-to-target surface spacing of 2.8. CO2-impinging jet stagnation conditions were maintained at approximately 200 bar and a temperature of ∼400 °C for most experiments. The goal is to understand how changes in the aforementioned parameters influence heat transfer between the working fluid and the heated surface. Additionally, due to the elevated Reynolds numbers and difference in thermodynamic properties between air and CO2, air-derived impingement correlations may not be appropriate for CO2 impingement; these correlations will be evaluated against experimental sCO2 impingement data. At the time of this study, no sCO2 impingement data was available relevant to sCO2 power cycles. The target surface is a 1.5-in. diameter copper block centered on the 3 mm jet orifice. A mica heating element bolted to the bottom of the copper block provides a uniform heat flux. Thermocouples embedded in the copper block are used to determine the surface temperature. Nusselt numbers obtained from experimental sCO2 test data are compared to area-averaged Nusselt numbers from air-derived correlations. The comparisons showed that air correlations drastically underpredict the heat transfer when sCO2 is used as the working fluid. A modified sCO2 correlation using experimental data at discussed conditions is derived based on an existing air correlation. A CFD study is also performed to further investigate sCO2 heat transfer characteristics, and assess the numerical model applicability to this problem type.

References

1.
Liu
,
Z.
,
2015
, “
Supply and Demand of Global Energy and Electricity
,”
Global Energy Interconnection
,
Boston, MA
, pp.
101
182
.
2.
Otto
,
M.
,
2019
, “
Improving Turbine Performance: A Contribution to the Understanding of Heat Transfer and Vortical Structures in Staggered Pin Fin Arrays
,”
Electronic theses and dissertations
, University of Central Florida, Orlando, FL.10.13140/RG.2.2.28298.49608
3.
Amano
,
R. S.
, ed.,
2014
,
Impingement Jet Cooling in Gas Turbines
,
WIT Press
,
Southampton, UK
.
4.
Kakaras
,
E.
,
Koumanakos
,
A. K.
, and
Doukelis
,
A.
, 2012, “
Pressurized Fluidized Bed Combustion (PFBC) Combined Cycle Systems
,”
Combined Cycle Systems for Near-Zero Emission Power Generation
, Elsevier, Amsterdam, The Netherlands, pp.
220
233
.10.1533/9780857096180.220
5.
Southwest Research Institute,
2019
, “
SwRI and GE Design and Operate the Highest Temperature sCO2 Turbine in the World
,”
Southwest Research Institute
,
San Antonio, TX
, accessed Oct. 27, 2022, https://www.swri.org/press-release/swri-ge-highest-temperature-sco2-turbine-world
6.
Gauntner
,
J. W.
,
Livingood
,
J. N.
, and
Hrycak
,
P.
,
1970
, “
Survey of Literature on Flow Characteristics of a Single Turbulent Jet Impinging on a Flat Plate
,” NASA, Washington, DC.https://www.fire.tc.faa.gov/pdf/fsr-0181.pdf
7.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Advances in Heat Transfer
,
Elsevier
,
New York
, pp.
565
631
.
8.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.10.1016/0894-1777(93)90022-B
9.
Bradbury
,
L. J. S.
,
1965
, “
The Structure of a Self-Preserving Turbulent Plane Jet
,”
J. Fluid Mech.
,
23
(
1
), p.
31
.10.1017/S0022112065001222
10.
Chia
,
C.
-J.,
Giralt
,
F.
, and
Trass
,
O.
,
1977
, “Mass Transfer in Axisymmetric Turbulent Impinging Jets,”
Ind. Eng. Chem. Fundam.
, 16(1), pp.
28
35
.10.1021/i160061a008
11.
Maurel
,
S.
, and
Solliec
,
C.
,
2001
, “
A Turbulent Plane Jet Impinging Nearby and Far From Aflat Plate
,”
Exp. Fluids
,
31
(
6
), pp.
687
696
.10.1007/s003480100327
12.
Kataoka
,
K.
,
Sahara
,
R.
,
Ase
,
H.
, and
Harada
,
T.
,
1987
, “
Role of Large-Scale Coherent Structures in Impinging Jet Heat Transfer
,”
J. Chem. Eng. Jpn.
,
20
(
1
), pp.
71
76
.10.1252/jcej.20.71
13.
Hrycak
,
P.
,
1981
,
Heat Transfer From Impinging Jets a Literature Review, Air Force Wright Aeronautical Laboratories
,
Wright-Patterson AFB OH
,
Newark, NJ
.
14.
Huang
,
G. C.
,
1963
, “
Investigations of Heat-Transfer Coefficients for Air Flow Through Round Jets Impinging Normal to a Heat-Transfer Surface
,”
J. Heat Mass Transfer-Trans. ASME
,
85
(
3
), pp.
237
243
.10.1115/1.3686082
15.
Brdlik
,
P. M.
, and
Savin
,
V. K.
,
1965
, “
Heat Transfer Between an Axisymmetric Jet and a Plate Normal to the Flow
,”
J. Eng. Phys.
,
8
(
2
), pp.
91
98
.10.1007/BF00829044
16.
Lytle
,
D.
, and
Webb
,
B. W.
,
1994
, “
Air Jet Impingement Heat Transfer at Low Nozzle-Plate Spacings
,”
Int. J. Heat Mass Transfer
,
37
(
12
), pp.
1687
1697
.10.1016/0017-9310(94)90059-0
17.
Chen
,
K.
,
Xu
,
R.-N.
, and
Jiang
,
P.-X.
,
2018
, “
Experimental Study of Jet Impingement Cooling With Carbon Dioxide at Supercritical Pressures on Micro Structured Surfaces
,”
J. Supercrit. Fluids
,
139
, pp.
45
52
.10.1016/j.supflu.2018.05.002
18.
Chen
,
K.
,
Xu
,
R.-N.
, and
Jiang
,
P.-X.
,
2018
, “
Numerical Investigation of Jet Impingement Cooling of a Low Thermal Conductivity Plate by Supercritical Pressure Carbon Dioxide
,”
Int. J. Heat Mass Transfer
,
124
, pp.
1003
1010
.10.1016/j.ijheatmasstransfer.2018.04.003
19.
Kim
,
S. H.
,
Lee
,
N.
,
Lee
,
H.
,
Bang
,
M.
, and
Cho
,
H. H.
,
2017
, “
A Numerical Study of Heat Transfer Characteristics of S-CO2 Impinging Jet for Direct Fired Oxy-Fuel s-CO2 Turbine
,” epub.
20.
Cormier
,
I. J.
,
Curbelo
,
A.
,
Khadse
,
A.
, and
Kapat
,
J.
,
2021
, “
A RANS Approach to Supercritical CO2 Single-Jet Impingement at Ultra-High Reynolds Numbers
,”
AIAA
Paper No. 2021-0157.10.2514/6.2021-0157
21.
Adeoye
,
S.
,
Parahovnik
,
A.
, and
Peles
,
Y.
,
2021
, “
A Micro Impinging Jet With Supercritical Carbon Dioxide
,”
Int. J. Heat Mass Transfer
,
170
(
121028
), p.
121028
.10.1016/j.ijheatmasstransfer.2021.121028
22.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Advances in Heat Transfer
,
Elsevier
,
New York
, pp.
1
60
.
23.
Huang
,
L.
, and
El-Genk
,
M. S.
,
1994
, “
Heat Transfer of an Impinging Jet on a Flat Surface
,”
Int. J. Heat Mass Transfer
,
37
(
13
), pp.
1915
1923
.10.1016/0017-9310(94)90331-X
24.
Sagot
,
B.
,
Antonini
,
G.
,
Christgen
,
A.
, and
Buron
,
F.
,
2008
, “
Jet Impingement Heat Transfer on a Flat Plate at a Constant Wall Temperature
,”
Int. J. Therm. Sci.
,
47
(
12
), pp.
1610
1619
.10.1016/j.ijthermalsci.2007.10.020
25.
Goldstein
,
R. J.
,
Behbahani
,
A. I.
, and
Heppelmann
,
K. K.
,
1986
, “
Streamwise Distribution of the Recovery Factor and the Local Heat Transfer Coefficient to an Impinging Circular Air Jet
,”
Int. J. Heat Mass Transfer
,
29
(
8
), pp.
1227
1235
.10.1016/0017-9310(86)90155-9
26.
Test Uncertainty
,
A.
,
2005
, “
PTC 19.1-2005
,” ASME, New York.https://webstore.ansi.org/standards/asme/ansiasmeptc192005
27.
Harvey
,
A. H.
,
Bell
,
I. H.
,
Huber
,
M. L.
,
Laesecke
,
A. R.
,
Lemmon
,
E. W.
,
Meyer
,
C. W.
,
Muzny
,
C. D.
, and
Perkins
,
R. A.
,
2016
, “
Thermophysical Properties of Carbon Dioxide and CO2-Rich Mixtures
,” National Institute of Standards and Technology, Gaithersburg, MD.https://netl.doe.gov/sites/default/files/event-proceedings/2014/utsr-workshop/wed/Harvey.pdf
28.
Siemens Industries Digital Software
,
2021
, “
Simcenter STAR-CCM+, Version 2021.3.1
,” Siemens, Munich, Germany.
29.
Richardson
,
J.
, Wardell, R., Fernandez, E., and Kapat, J.,
2023
, “
Experimental and Computational Heat Transfer Study of sCO2 Single-Jet Impingement
,”
ASME J. Eng. Gas Turbines Power
, epub.10.1115/1.4063691
You do not currently have access to this content.