Abstract

This article introduces a numerical procedure dedicated to the identification of isolated branches of solutions for nonlinear mechanical systems. Here, it is applied to a fan blade subject to rubbing interactions and harmonic forcing. Both contact, which is initiated by means of the harmonic forcing, and dry friction are accounted for. The presented procedure relies on the computation of the system's nonlinear normal modes (NNM) and their analysis through the application of an energy principle derived from the Melnikov function. The dynamic Lagrangian frequency-time strategy associated with the harmonic balance method (DLFT-HBM) is used to predict the blade's dynamics response as well as to compute the autonomous nonlinear normal modes. The open industrial fan blade NASA rotor 67 is employed in order to avoid confidentiality issues and to promote the reproducibility of the presented results. Previous publications have underlined the complexity of NASA rotor 67's dynamics response as it undergoes structural contacts, thus making it an ideal benchmark blade when searching for isolated solutions. The application of the presented procedure considering a varying amplitude of the harmonic forcing allows to predict isolated branches of solutions featuring nonlinear resonances. With the use of the Melnikov energy principle, nonlinear modal interactions are shown to be responsible for the separation of branches of solutions from the main response curve. In the end, the application of the presented procedure on an industrial blade model with contact interactions demonstrates that it is both industry-ready and applicable to highly nonlinear mechanical systems.

References

1.
International Energy Agency
,
2021
, “
Net Zero by 2050, A Roadmap for the Global Energy Sector
,” International Energy Agency, Paris, France, accessed June 14, 2021, https://www.iea.org/reports/net-zero-by-2050
2.
Millecamps
,
A.
,
Brunel
,
J.-F.
,
Dufrénoy
,
P.
,
Garcin
,
F.
, and
Nucci
,
M.
,
2009
, “
Influence of Thermal Effects During Blade-Casing Contact Experiments
,”
ASME
Paper No. DETC2009-86842.10.1115/DETC2009-86842
3.
Millecamps
,
A.
,
Batailly
,
A.
,
Legrand
,
M.
, and
Garcin
,
F.
,
2015
, “
Snecma's Viewpoint on the Numerical and Experimental Simulation of Blade-Tip/Casing Unilateral Contacts
,”
ASME
Paper No. GT2015-42682.10.1115/GT2015-42682
4.
Carpenter
,
N. J.
,
Taylor
,
R. L.
, and
Katona
,
M. G.
,
1991
, “
Lagrange Constraints for Transient Finite Element Surface Contact
,”
Int. J. Numer. Meth. Eng.
,
32
(
1
), pp.
103
128
.10.1002/nme.1620320107
5.
Legrand
,
M.
, and
Pierre
,
C.
,
2009
, “
Numerical Investigation of Abradable Coating Wear Through Plastic Constitutive Law: Application to Aircraft Engines
,”
ASME
Paper No. DETC2009-87669.10.1115/DETC2009-87669
6.
Williams
,
R. J.
,
2011
, “
Simulation of Blade Casing Interaction Phenomena in Gas Turbines Resulting From Heavy Tip Rubs Using an Implicit Time Marching Method
,”
ASME
Paper No. GT2011-45495.10.1115/GT2011-45495
7.
Sinha
,
S. K.
,
2013
, “
Rotordynamic Analysis of Asymmetric Turbofan Rotor Due to Fan Blade-Loss Event With Contact-Impact Rub Loads
,”
J. Sound Vib.
,
332
(
9
), pp.
2253
2283
.10.1016/j.jsv.2012.11.033
8.
Nacivet
,
S.
,
Pierre
,
C.
,
Thouverez
,
F.
, and
Jezequel
,
L.
,
2003
, “
A Dynamic Lagrangian Frequency-Time Method for the Vibration of Dry-Friction-Damped Systems
,”
J. Sound Vib
,
265
(
1
), pp.
201
219
.10.1016/S0022-460X(02)01447-5
9.
Salles
,
L.
,
Staples
,
B.
,
Hoffmann
,
N.
, and
Schwingshackl
,
C.
,
2016
, “
Continuation Techniques for Analysis of Whole Aeroengine Dynamics With Imperfect Bifurcations and Isolated Solutions
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1897
1911
.10.1007/s11071-016-3003-y
10.
Petrov
,
E. P.
,
2012
, “
Multiharmonic Analysis of Nonlinear Whole Engine Dynamics With Bladed Disc-Casing Rubbing Contacts
,”
ASME
Paper No. GT2012-68474.10.1115/GT2012-68474
11.
Petrov
,
E. P.
,
2016
, “
Analysis of Bifurcations in Multiharmonic Analysis of Nonlinear Forced Vibrations of Gas Turbine Engine Structures With Friction and Gaps
,”
ASME J. Eng. Gas Turbines Power
,
138
(
10
), p.
102502
.10.1115/1.4032906
12.
Peletan
,
L.
,
Baguet
,
S.
,
Torkhani
,
M.
, and
Jacquet-Richardet
,
G.
,
2014
, “
Quasi-Periodic Harmonic Balance Method for Rubbing Self-Induced Vibrations in Rotor-Stator Dynamics
,”
Nonlinear Dyn.
,
78
(
4
), pp.
2501
2515
.10.1007/s11071-014-1606-8
13.
Colaïtis
,
Y.
, and
Batailly
,
A.
,
2022
, “
Stability Analysis of Periodic Solutions Computed for Blade-Tip/Casing Contact Problems
,”
J. Sound Vib.
,
538
, p.
117219
.10.1016/j.jsv.2022.117219
14.
Colaïtis
,
Y.
, and
Batailly
,
A.
,
2023
, “
Stability Analysis of an Industrial Blade Accounting for a Blade-Tip/Casing Nonlinear Interface
,”
ASME J. Eng. Gas Turbines Power
,
145
(
4
), p.
041003
.10.1115/1.4055492
15.
Petrov
,
E. P.
,
2017
, “
Stability Analysis of Multiharmonic Nonlinear Vibrations for Large Models of Gas Turbine Engine Structures With Friction and Gaps
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022508
.10.1115/1.4034353
16.
Vadcard
,
T.
,
Colaïtis
,
Y.
,
Batailly
,
A.
, and
Thouverez
,
F.
,
2022
, “
Assessment of Two Harmonic Balance Method-Based Numerical Strategies for Blade-Tip/Casing Interactions: Application to NASA Rotor67
,”
ASME J. Eng. Gas Turbines Power
,
144
(
12
), p.
121004
.10.1115/1.4055416
17.
Detroux
,
T.
,
Renson
,
L.
,
Masset
,
L.
, and
Kerschen
,
G.
,
2015
, “
The Harmonic Balance Method for Bifurcation Analysis of Large-Scale Nonlinear Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
296
, pp.
18
38
.10.1016/j.cma.2015.07.017
18.
Grolet
,
A.
, and
Thouverez
,
F.
,
2015
, “
Computing Multiple Periodic Solutions of Nonlinear Vibration Problems Using the Harmonic Balance Method and Groebner Bases
,”
Mech. Syst. Sig. Process.
,
52–53
, pp.
529
547
.10.1016/j.ymssp.2014.07.015
19.
Cenedese
,
M.
, and
Haller
,
G.
,
2020
, “
How Do Conservative Backbone Curves Perturb Into Forced Responses? A Melnikov Function Analysis
,”
Proc. R. Soc. A
,
476
(
2234
), p.
20190494
.10.1098/rspa.2019.0494
20.
Volvert
,
M.
, and
Kerschen
,
G.
,
2021
, “
Phase Resonance Nonlinear Modes of Mechanical Systems
,”
J. Sound Vib.
,
511
, p.
116355
.10.1016/j.jsv.2021.116355
21.
Heinze
,
T.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2020
, “
Global Detection of Detached Periodic Solution Branches of Friction-Damped Mechanical Systems
,”
Nonlinear Dyn
,
99
(
3
), pp.
1841
1870
.10.1007/s11071-019-05425-4
22.
Detroux
,
T.
,
Noël
,
J.-P.
,
Virgin
,
L. N.
, and
Kerschen
,
G.
,
2018
, “
Experimental Study of Isolas in Nonlinear Systems Featuring Modal Interactions
,”
PLoS One
,
13
(
3
), p.
e0194452
.10.1371/journal.pone.0194452
23.
Petrov
,
E. P.
,
2019
, “
A Method for Parametric Analysis of Stability Boundaries for Nonlinear Periodic Vibrations of Structures With Contact Interfaces
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031023
.10.1115/1.4040850
24.
Mangussi
,
F.
, and
Zanette
,
D. H.
,
2016
, “
Internal Resonance in a Vibrating Beam: A Zoo of Nonlinear Resonance Peaks
,”
PloS One
,
11
(
9
), p.
e0162365
.10.1371/journal.pone.0162365
25.
Alcorta
,
R.
,
Baguet
,
S.
,
Prabel
,
B.
,
Piteau
,
P.
, and
Jacquet-Richardet
,
G.
,
2019
, “
Period Doubling Bifurcation Analysis and Isolated Sub-Harmonic Resonances in an Oscillator With Asymmetric Clearances
,”
Nonlinear Dyn.
,
98
(
4
), pp.
2939
2960
.10.1007/s11071-019-05245-6
26.
Benacchio
,
S.
,
Giraud-Audine
,
C.
, and
Thomas
,
O.
,
2022
, “
Effect of Dry Friction on a Parametric Nonlinear Oscillator
,”
Nonlinear Dyn.
,
108
(
2
), pp.
1005
1026
.10.1007/s11071-022-07233-9
27.
Gobat
,
G.
,
Guillot
,
L.
,
Frangi
,
A.
,
Cochelin
,
B.
, and
Touzé
,
C.
,
2021
, “
Backbone Curves, Neimark-Sacker Boundaries and Appearance of Quasi-Periodicity in Nonlinear Oscillators: Application to 1:2 Internal Resonance and Frequency Combs in MEMS
,”
Meccanica
,
56
(
8
), pp.
1937
1969
.10.1007/s11012-021-01351-1
28.
Förster
,
A.
, and
Krack
,
M.
,
2016
, “
An Efficient Method for Approximating Resonance Curves of Weakly-Damped Nonlinear Mechanical Systems
,”
Comput. Struct.
,
169
, pp.
81
90
.10.1016/j.compstruc.2016.03.003
29.
Sarrouy
,
E.
,
Grolet
,
A.
, and
Thouverez
,
F.
,
2011
, “
Global and Bifurcation Analysis of a Structure With Cyclic Symmetry
,”
Int. J. Non Linear Mech.
,
46
(
5
), pp.
727
737
.10.1016/j.ijnonlinmec.2011.02.005
30.
Lamarque
,
C.-H.
, and
Savadkoohi
,
A. T.
,
2022
, “
Algebraic Techniques and Perturbation Methods to Approach Frequency Response Curves
,”
Int. J. Non Linear Mech.
,
144
, p.
104096
.10.1016/j.ijnonlinmec.2022.104096
31.
Hill
,
T. L.
,
Cammarano
,
A.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2015
, “
Interpreting the Forced Responses of a Two-Degree-of-Freedom Nonlinear Oscillator Using Backbone Curves
,”
J. Sound Vib.
,
349
, pp.
276
288
.10.1016/j.jsv.2015.03.030
32.
Yuan
,
J.
,
Sun
,
Y.
,
Schwingshackl
,
C.
, and
Salles
,
L.
,
2022
, “
Computation of Damped Nonlinear Normal Modes for Large Scale Nonlinear Systems in a Self-Adaptive Modal Subspace
,”
Mech. Syst. Sig. Process.
,
162
, p.
108082
.10.1016/j.ymssp.2021.108082
33.
Sun
,
Y.
,
Vizzaccaro
,
A.
,
Yuan
,
J.
, and
Salles
,
L.
,
2021
, “
An Extended Energy Balance Method Arfor Resonance Prediction in Forced Response of Systems With Non-Conservative Nonlinearities Using Damped Nonlinear Normal Mode
,”
Nonlinear Dyn.
,
103
(
4
), pp.
3315
3333
.10.1007/s11071-020-05793-2
34.
Vadcard
,
T.
,
Batailly
,
A.
, and
Thouverez
,
F.
,
2022
, “
On Harmonic Balance Method-Based Lagrangian Contact Formulations for Vibro-Impact Problems
,”
J. Sound Vib
,
531
, p.
116950
.10.1016/j.jsv.2022.116950
35.
Von Groll
,
G.
, and
Ewins
,
D. J.
,
2001
, “
The Harmonic Balance Method With Arc-Length Continuation in Rotor/Stator Contact Problems
,”
J. Sound Vib.
,
241
(
2
), pp.
223
233
.10.1006/jsvi.2000.3298
36.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
.10.1115/1.3176036
37.
Charleux
,
D.
,
Gibert
,
C.
,
Thouverez
,
F.
, and
Dupeux
,
J.
,
2006
, “
Numerical and Experimental Study of Friction Damping Blade Attachments of Rotating Bladed Disks
,”
Int. J. Rotating Mach.
,
2006
, pp.
1
13
.10.1155/IJRM/2006/71302
38.
Salles
,
L.
,
Gouskov
,
A. M.
,
Blanc
,
L.
,
Thouverez
,
F.
, and
Jean
,
P.
,
2010
, “
Dynamic Analysis of Fretting-Wear in Joint Interface by a Multiscale Harmonic Balance Method Coupled With Explicit or Implicit Integration Schemes
,”
ASME
Paper No. GT2010-23264.10.1115/GT2010-23264
39.
Wriggers
,
P.
, and
Laursen
,
T. A.
,
2006
,
Computational Contact Mechanics
, Springer-Verlag, Berlin, Heidelberg
.
40.
Salles
,
L.
,
Blanc
,
L.
,
Thouverez
,
F.
,
Gouskov
,
A. M.
, and
Jean
,
P.
,
2009
, “
Dynamic Analysis of a Bladed Disk With Friction and Fretting-Wear in Blade Attachments
,”
ASME
Paper No. GT2009-60151.10.1115/GT2009-60151
41.
Rosenberg
,
R. M.
,
1960
, “
Normal Modes of Nonlinear Dual-Mode Systems
,”
ASME J. Appl. Mech.
,
27
(
2
), pp.
263
268
.10.1115/1.3643948
42.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1991
, “
Non-Linear Normal Modes and Invariant Manifolds
,”
J. Sound Vib.
,
150
(
1
), pp.
170
173
.10.1016/0022-460X(91)90412-D
43.
Krack
,
M.
,
2015
, “
Nonlinear Modal Analysis of Nonconservative Systems: Extension of the Periodic Motion Concept
,”
Comput. Struct.
,
154
, pp.
59
71
.10.1016/j.compstruc.2015.03.008
44.
Laxalde
,
D.
, and
Thouverez
,
F.
,
2009
, “
Complex Non-Linear Modal Analysis for Mechanical Systems: Application to Turbomachinery Bladings With Friction Interfaces
,”
J. Sound Vib.
,
322
(
4–5
), pp.
1009
1025
.10.1016/j.jsv.2008.11.044
45.
Urasek
,
D. C.
, and
Gorrell
,
W. T.
,
1979
, “
Performance of Two-Stage Fan Having Low-Aspect-Ratio First-Stage Rotor Blading
,” accessed May 26, 2021, https://ntrs.nasa.gov/citations/19790018972
46.
Doi
,
H.
, and
Alonso
,
J. J.
,
2002
, “
Fluid/Structure Coupled Aeroelastic Computations for Transonic Flows in Turbomachinery
,”
ASME
Paper No. GT2002-30313.10.1115/GT2002-30313.
47.
Laity
,
D.
,
1980
, Stage 67 Rotor and Stage 67 Casing Half Stators Mounted,
Records of the National Aeronautics and Space Administration
, 1903–2006. Photographs Relating to Agency Activities, Facilities and Personnel, 1973–2013,
College Park, MD
, accessed Apr. 20, 2021, https://catalog.archives.gov/id/17500553
48.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
49.
Jahn
,
M.
,
Tatzko
,
S.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2019
, “
Comparison of Different Harmonic Balance Based Methodologies for Computation of Nonlinear Modes of Non-Conservative Mechanical Systems
,”
Mech. Syst. Sig. Process.
,
127
, pp.
159
171
.10.1016/j.ymssp.2019.03.005
You do not currently have access to this content.